
 ,latigid erom gnimoceb yldipar si taht dlrow laugnilitlum a nI

 ssecca dna noitacinummoc rof htob lativ si noitalsnart enihcam

 ,hsilgnE ni si noitamrofni enil-no eht fo tsom sA .noitamrofni ot

 segaugnaL .srekaeps hsilgnE-non ot llaf stfieneb tsetaerg eht

 egral eht kcal noitazilatigid fo eerged wol a ro srekaeps wef htiw

 .sdohtem tnerruc rof dedeen atad gniniart lellarap fo stnuoma

 drow fo srebmun egral yrev evah ygolohprom hcir htiw segaugnaL

 rof seuqinhceT .sdrow erar deledom ylroop ynam htiw ,smrof

 elbisaef noitalsnart enihcam ekam stnemeriuqer atad gnicuder

 .segaugnal ecruoser-wol eseht rof

  

 sa detneserper si txet woh ot stnemevorpmi stneserp siseht sihT

 hguorht rehto hcae morf tfieneb nac segaugnal woh ,sdrowbus

 nac atad laugnilonom lanoitidda woh dna ,refsnart laugnil-ssorc

 .sksat yrailixua gnisioned hguorht desu eb
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 rohtuA
 soornörG enrA-gitS

 noitatressid larotcod eht fo emaN
 segaugnal ecruoser-wol hcir yllacigolohprom otni noitalsnart enihcaM

 rehsilbuP  gnireenignE lacirtcelE fo loohcS

 tinU  scitsuocA dna gnissecorP langiS fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  202 /  0202

 hcraeser fo dleiF  ygolonhceT egaugnaL dna hceepS

 dettimbus tpircsunaM  0202 tsuguA 41  ecnefed eht fo etaD  1202 yraunaJ 81

 )etad( detnarg ecnefed cilbup rof noissimreP  0202 rebotcO 51  egaugnaL  hsilgnE

 hpargonoM  noitatressid elcitrA  noitatressid yassE

 tcartsbA
 denediw gnilbane ,noitacilppa gnissecorp egaugnal larutan tnatropmi na si noitalsnart enihcaM
 .dlrow laugnilitlum a ni seitinutroppo ssenisub dna ,egnahcretni larutluc ,noitamrofni ot ssecca

 -navda dipar edam yltnecer sah noitalsnart enihcam ,skrowten laruen peed otni hcraeser yb nevirD
 ,yrgnuh-atad eb ot dnet sdohtem eht sA .tuptuo noitalsnart eht fo ycneufl eht ni ylralucitrap ,sec

 .seno ecruoser-wol naht erom detfieneb evah segaugnal ecruoser-hgih
 hcir yllacigolohprom ecruoser-wol otni noitalsnart enihcam evorpmi ot si mia eht ,krow siht nI

 ,smrof drow fo rebmun eht ni noisolpxe lairotanibmoc a ot sdael ygolohprom hciR .segaugnal
 -da siseht sihT .sdrow erar deledom ylroop ynam gniniatnoc ,seiralubacov egral yrev ni gnitluser
 sdrow gnitnemges rof sdohtem no si sucof ehT .sehcaorppa elpitlum htiw segnellahc eseht sesserd

 eht esaercni ot dna ,snoitatneserper denrael reisae suht dna tneuqerf erom teg ot ,sdrowbus otni
 ,sksat detaler morf secruoser lanoitidda tiolpxe ot tnatropmi si tI .segaugnal neewteb yrtemmys
 htob morf atad laugnilonom dna sriap egaugnal ecruoser-hgih detaler morf atad lellarap sa hcus

 eb nac noitalsnart ladomitlum rof stes atad yrailixua lufesU .segaugnal ecruoser-hgih dna -wol
 yrailixua siht gnitiolpxe rof sdohtem ehT .sksat noitalsnart ylno-txet dna gninoitpac morf dnuof

 -neotua ecneuqes gnisioned gnisu .g.e noitatnemgua atad dna gninrael laugnil-ssorc edulcni atad
 desivrepusnu gnisu edulcni siseht eht ni desu sputes gninraeL .noitaziraluger drowbus dna sredoc
 ecudorp ot troffe noitatonna na ediug ot gninrael evitca gnisu ,sdohtem tnednepedni-egaugnal dna
 .refsnart laugnil-ssorc evorpmi ot gninrael ksat-itlum deludehcs gnisu dna ,atad evitamrofni erom
 -firomO ,taCtalF rossefroM :sdohtem noitatnemges levon evfi edulcni siseht eht fo snoitubirtnoC
 -tem laruen desivrepus-imes a dna ,enurP+ME rossefroM ,rossefroM etangoC ,rossefroM detcirtser

 noitatnemges fo noitaulavE .detneserp si taCtalF rossefroM rof ygetarts gninrael evitca nA .doh
 enurP+ME rossefroM .sdohtem citamotua cisnirtxe dna cisnirtni htob gnisu demrofrep si ytilauq
 -sefroM naht noitatnemges desivrepusnu ni ytilauq retteb dna tsoc rewol htob htiw sledom sdnfi
 tseb ehT .snoitatonna gnitcelloc rof noitceles modnar ot roirepus si gninrael evitcA .enilesaB ros
 -nemges taCtalF rossefroM gnisu nehw deveihca si noitatnemges desivrepus-imes ni ecnamrofrep

 .dlefi modnar lanoitidnoc a ni serutaef sa snoitat
 dna ,emehcs gninrael ksat-itlum edis-tegrat a edulcni noitalsnart enihcam ot snoitubirtnoC

 noitaulave na ,UELBeL .redocneotua ecneuqes gnisioned a htiw gninrael ksat-itlum deludehcs
 ytilauq noitalsnart fo noitaulavE .detneserp si segaugnal hcir yllacigolohprom rof elbatius erusaem

 tsom eht ,ecracs era secruoser nehW .noitaulave namuh dna citamotua htob gnisu demrofrep si
 sa hcus ,atad yrailixua fo sepyt rehtO .segaugnal detaler morf semoc atad yrailixua tnatropmi

 .evitalumuc yltrap era sniag eht dna laicfieneb osla era ,aroproc laugnilonom

 sdrowyeK ,gninrael desivrepusnu ,sdrowbus ,noitatnemges emehprom ,noitalsnart enihcam  
peed ,gninrael evitca ,gninrael ksat-itlum ,gninrael refsnart ,gninrael desivrepus-imes  

 redocneotua ecneuqes gnisioned ,segaugnal ecruoser-wol ,skrowten laruen
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 ökkiskY  sotial nakiitsuka aj nylettisäknilaangiS

 ajraS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  202 /  0202

 alasumiktuT  aigolonketileik aj -ehuP
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 aifargonoM  ajriksötiävilekkitrA  ajriksötiäveessE

 ämletsiviiT
 -aal ätsitne aatsillodham akoj ,sullevos nylettisäk netleik netsillonnoul äekrät no sönnääkenoK

 -sutukiavorouv atsiruuttluk aattuasede äkes ,assamliaam ässesileikinom nooteit nysääp nammej
 nihiokkrevoruen niivys aniokiaemiiv itsaepon tynyttihek no sönnääkenoK .aatnimiotekiil aj at

 aksoK .tynytside no suuvujus nenilleleik neskönnääk niknetE .atsoisna neskumiktut navutsidhok
 .ellileik elliudiosruser nivyh tynyttiksek no sytihek ,äiräämatad airuus tävättyllede tämletenem
 -sesigolofrom no äneleikedhok nuk ätsönnääkenok äätside no aneettiovat najriksötiäv nämäT

 -oumnanas aathoj aigolofrom sakir neleiK .ajessruser itsakuin allivataas no elloj ,ileik sakir it
 -as aisianivraH .ajotsanas airuus niättire neattout neeskydhäjär neesirotanibmok närääm nejot
 aaesu neätnydöyh naatatsav niisietsaah nihiän assajriksötiäV .aatnillam aekiav no ajotoumnan

 tudaas alluva nannokliP .niiso atnoklip nejonas no apatsimytsehäl nenillaisaääP .aapatsimytsehäl
 ätsiläv netleik aatnarap naadiov allannoklip iskäsil äknim ,aatnillam aipmopleh tavo tavatsytise

 netleiksialukus iskikremise ,atsiskullevos ätsisiehäl ajessruser äätnydöyh ääekrät nO .aairtemmys
 -yäk assajriksötiäV .atsiotsienia ätsisileikisky äkes ,atsiotsienia ätsivätläsis äitsket atsiakkannir
 atnotamaajho netuk ,aimletesasimippoenok aisialire aj äimletenem aimottamuppiirileik näätet

 ,atsimatsakir natad ,atsimippo ätsileikinom ällämättyäk näätennydöyh ajotsieniaupA .atsimippo
 -simippoenok atsiviitkA .aitniosiralugeratnoklip äkes ,airedookneotuaissnevkes aavatsiop aanihok

 näväthet nenom auttetuluatakia aj ,neesimäärek nedioitaatonna naapmaakkohet näätetyäk at
 .neesimatsohet nesimippo nesileikinom atsimippo

 -firomO ,taCtalF rossefroM :naatnoklip nejonas äämletenem attuu isiiv näälletise assajriksötiäV
 -iokkrevoruen uttajhoiloup äkes ,enurP+ME rossefroM ,rossefroM etangoC ,rossefroM detcirtser
 nesimippoenok nesiviitka näälletise ellämletenem- taCtalF rossefroM .ämletenem avutsurep nih
 .allioitaaulave allisittaamotua allirousäpe ätte allirous äkes naadioivra autaal nannokliP .aigetarts
 ipmerap ätte ovra noitknufsunnatsuk ipmela äkes no alliellam ällimätyöl nenurP+ME rossefroM
 atsiannutas no nenimippoenok neniviitkA .ällämletenem- enilesaB rossefroM niuk utaal nannoklip
 naatetuvaas utaal sarap assannoklip assutajhoilouP .neesimäärek nediotaatonna ipmerap aatnilav

 .ässätneksiannutas assesillodhe änietriip ajotnoklip nitaCtalF rossefroM ällämättyäk
 -po näväthet nenom avuthapat alleloup neleikedhok näälletise änimletenem neskönnääkenoK
 -es aavatsiop aanihok äätnydöyh akoj ,nenimippo näväthet nenom uttetuluatakia äkes nenimip

 -aaulave avutlevos ellileikedhok elliakkir itsesigolofrom näälletise iskäsiL .airedookneotuaissnevk
 -ioivrasimhi ätte allisittaamotua äkes naadioivra autaal neskönnääkenoK .UELBeL ,ämletenemoit

 ,äisiähäv tavo tissruser näväthetsönnääk navelo aneettiovat nuK .ällimletenem allivutsurep nih
 .äytöyh no atsiotsienia ätsisileikisky söyM .teleiksialukus tavo totsieniaupa tämmiekrät

 tanasniavA ,nenimippo uttajhoiloup ,nenimippo notamaajho ,atnoklipimeeefrom ,sönnääkenok  
tävys ,nenimippoenok neniviitka ,nenimippo näväthet nenom ,nenimippo-otriis  
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 gardnammaS
 gninttäsrevöniksaM .kårps agilrutan va gnildnaheb i tfigppu gitkiv ne rä gninttäsrevöniksaM

 gikårpsrefl ne i retehgiljömsräffa hco etybtu tllerutluk ,noitamrofni llit gnågllit dakö röggiljöm
 snegninttäsrevöniksam i gnirttäbröf bbans ne llit ttel rah tänlaruen apujd i gninksroF .dlräv
 rettästuröf leger i anredotem tta va dnurg åP .tyfl tgilkårps åp gninoteb lleiceps dem ,tetilavk

 .tsem kårps akirsruser tannyg negnirttäbröf rah ,redgnämatad arots
 -olofrom agittafsruser llit gninttäsrevöniksam arttäbröf tta rä gnildnahva anned dem tetfyS

 tekliv ,remrofdro telatna i noisolpxe ksirotanibmok ne llit redel igolofrom kiR .kårps akir tksig
 negnildnahva I .arelledom tta aråvs rä mos dro atnyslläs arefl dem rerälubakov arots i raretluser

 va gniretnemges rä etsagitkiv neD .ragninamtu assed dem uti at tta röf reigetarts arefl sajttyntu
 tta erattäl rä mos renoitatneserper ednammokeröf eratfo åf tta röf ,raledsdnåtseb erdnim llit dro

 nårf resruser ajttyntu tta tgitkiv rä teD .nekårps nallem nirtemmys akö tta röf hco ,arelledom
 -årpsne hco ,rapkårps akirsruser edatkälseb röf atad allellarap lepmexe llit ,retfigppu edaretaler

 arädnukes nak gninttäsrevö ladomitlum I .kårps agittafsruser hco akirsruser edåb röf atad agik
 ajttyntu tta röf redoteM .gninttäsrevö daresab-txet hco retxetdlib va gnirereneg nårf sattih atad

 va ednadnävna ,atad va gniretnemgua ,gninrälni gilkårpsrävt rattafenni atad arädnukes assed
 röf ragninllätsppU .gniresiraluger daresabsgniretnemges hco ,redokneotuasnevkes ednapmädsurb
 -neorebokårps hco gninrälniniksam drytso rattafenni negnildnahva i sdnävna mos gninrälniniksam
 dgalamehcs tmas ,gniretonna arttäbröf tta röf gninrälniniksam vitka va ednadnävna ,redotem ed

 .gninrälni gilkårpsrävt arttäbröf tta röf retfigppu arefl dem gninrälni
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“Y. That perfect letter. The wishbone, fork in the
road, empty wineglass. The question we ask over

and over. (Marjorie Celona, 2012)”
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“Language is the meta-language
(Eldon G. Lytle, 1974)”

1. Introduction

One of the distinguishing characteristics of humans is the propensity to use lan-
guage for communication. We humans have put this skill to great use, and in
the process we have created ca 7000 (Simons and Fennig, 2018) naturally evolved
languages that humans use in communication with each other, called natural
languages. Some examples of natural languages are English, Finnish, and Latin.
Natural languages can be contrasted against constructed, controlled, and formal
languages. Constructed languages, e.g. Lojban, Esperanto, and Sindarin, were
designed for some particular use. One prominent subset of constructed languages
are the proposed international auxiliary languages, intended to be learned by ev-
eryone to facilitate global communication. Controlled languages are structured
sub-languages that add constraints limiting the expressiveness and ambiguity of
a natural language. Formal languages, including programming languages such
as Python and C, are much less ambiguous and more structured, making them
very suitable for automatic processing.
Human language use is viewed as either a sign of intelligence, or even a central

component in creating intelligence. Being able to build machines with language
ability is a major milestone in the quest for artificial intelligence. Turing (1950)
proposed a famous test for evaluating the ability of a machine to exhibit intelligent
behavior. In the test, a human evaluator must determine which of two test
subjects is a human and which is a machine, based only on textual communication.
The ELIZA chatbot (Weizenbaum, 1966) cast some doubt on the effectiveness of
humans as judges in a Turing test. ELIZA was designed to lead the conversation
in directions where the human did most of the work, and it could fool people
into overestimating its ability. On a positive note, ELIZA showed that even very
shallow language ability can be useful under some conditions.
To solve general natural language tasks is a very challenging problem, which

requires both understanding the meaning of ambiguous statements, and the abil-
ity to generate replies in the form of natural language. Humans solve these tasks
nearly effortlessly, and it is easy to underestimate the difficulty of finding artificial
solutions to them.

Machine translation is an example of a natural language task that requires
both understanding of source text and generation of target text. The dream of
building a universal translation device, like the Babel fish from Douglas Adams’
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The Hitchhiker’s Guide to the Galaxy, has captivated the minds of many thinkers
throughout history. Such a device would translate any speech and text into the
native language of the user. The translation would occur in real-time as the user
encounters material in any foreign language.
Effective general translation would be beneficial to society in many ways. Trans-

lation could enable increased access to the wealth of digital information collected
on-line, regardless of which languages the reader understands. As most of this
information is in English, the greatest benefits would fall to non-English speak-
ers. Translation can open new business opportunities in many large multilingual
markets, including the EU. In addition to how machine translation can help hu-
mans communicate with each other, methods developed in machine translation
can power advances in natural language understanding, opening new possibilities
for human-computer interaction.
Machine translation has made rapid advances in the last decade, both academ-

ically and commercially. The improvement is most visible in increased fluency,
meaning that the translation output is more often grammatically correct and na-
tive sounding. The main reason for this success is new methods applying deep
neural networks to machine translation. The rapid digitalization of society has
been another trend driving improved performance during the last decades. The
availability of parallel training corpora suitable for training machine translation
systems has rapidly increased.
Despite the recent success, the task of machine translation is far from solved.

Current state-of-the-art methods require very large amounts of data, preferably
from the domain of the intended use. The hunger for data is in part due to insuf-
ficient language understanding and ability to generalize from that understanding.
Translation of a sentence is unlikely to succeed unless the training data contains
examples discussing the same topics, and examples using similar expressions.
Languages are not equal with regard to resources. Languages vary in the num-

ber of speakers, but also in the wealth of the nations in which the language is used,
and the degree of digitalization. When ranked by the number of first-language
speakers, the top 8 languages cover 40% of speakers, while 94.3% of languages
(all except the top 308) have less than 1 million speakers each (Simons and Fen-
nig, 2018). To mention the language coverage of some example resources at the
time of writing, Universal Dependencies are available in 92 languages (Universal
Dependencies contributors, 2020), Google Translate in 108 languages, and the
New Testament in over 1000 languages. The resource with the largest coverage
is the Automatic Similarity Judgment Program (Wichmann et al., 2020), which
covered 5499 languages at the time of writing.
The amount of data needed can also vary based on language characteristics.

Rich, productive morphology leads to a combinatorial explosion in the number of
word forms. Therefore, a larger corpus is required to reach the same coverage of
word forms. Data sparsity can also arise within a language, e.g. geographically
from dialects, or temporally through changing language use. Domains of text
with specific vocabularies and styles of expression also contribute to sparsity.
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The differences in resources lead to a scarcity in available language technology
to use as parts of applications. Having engineers hand-craft rule-based systems
separately for each language requires large amounts of human effort, easily ex-
ceeding the available resources considering the large number of languages in the
world. Such methods do not require large corpora, only human effort. An al-
ternative is to use machine learning, where the parameters of a statistical
model are fit to training data. However, statistical methods work best with large
amounts of data, which can be difficult to find or collect for most of the world’s
languages. Therefore, developing language-independent methods to improve
the effectiveness of learning from small data is very valuable for the large number
of low-resource languages. Examples of such methods include segmenting words
into subwords to get more frequent and thus easier learned representations, us-
ing cross-lingual learning to leverage training data from related high-resource
languages, exploiting monolingual and other auxiliary data via data augmen-
tation, and using active learning to guide an annotation effort to produce
maximally informative data.
From an ethical perspective, translation into low-resource languages comes with

unique concerns. When making public machine translation into minority lan-
guages, high quality must be demanded, even though low resources make it diffi-
cult to achieve. There is a high quality threshold for usefulness, as many of the
minority language speakers are bilingual and are likely to prefer a foreign lan-
guage version over a poor-quality translation into their native language. There
is also a risk that well-intentioned but unaware users, without language ability
in the minority language, inadvertently poison online resources or corpora with
low-quality machine translation output. Such users may e.g. want to increase the
coverage of resources such as Wikipedia, or may be legally required to produce
texts in the minority language. In addition to being a nuisance to native speakers,
the low-quality machine translation output can be problematic for future natu-
ral language processing systems based on machine learning, when it ends up in
training data.
Many machine translation challenges remain, especially for low-resource lan-

guages with rich morphology. In the next section, I discuss how this thesis
attempts to address some of these challenges.

1.1 Scope and contributions of the thesis

Table 1.1 summarizes the content of the Publications included in this thesis,
grouped by recurring themes. Figure 1.1 shows the wide range of languages
used in the experiments. Languages from diverse language families are included,
increasing the convincingness of the results. All the languages are European.
Most of the languages are morphologically complex.
The work in this thesis is motivated by a desire to improve translation into mor-

phologically rich languages (MRL), especially in low-resource settings. The
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VI intra – ✓ (✓) – – – – – –
VII src–trg – ✓ ✓ – – – – – –
VIII trg–trg – ✓ ✓ – – ✓ – – –
IX – ✓ – ✓ – – ✓ ✓ ✓ –
X src–trg – – – – – – – ✓ –
XI – – – – – – ✓ ✓ ✓ –
XII – – – – – – – – – ✓

Table 1.1. Publications categorized according to themes. SWR is short for subword regu-
larization. Consistency type abbreviations: intra = language-internal, src–trg =
source–target, trg–trg = target–target.

task is framed as a one-to-many (Luong, 2016) setting in multilingual neural
machine translation (MNMT), meaning that there is a single source language, but
the possibility to exploit cross-lingual transfer between multiple (related) target
languages. The task is called asymmetric-resource one-to-many translation,
as the target languages are assumed to have very different amounts of training
resources available. The low-resource morphologically rich language is on the tar-
get side of the translation. This direction receives much less research attention
than the opposite, with English notably popular as the target language.
The Publications can be divided into those on the task of morphological seg-

mentation (Publication I to V) and those on the task of machine translation
(MT) (Publication VI to XII). This division primarily reflects how the methods
are evaluated: the correctness of morph boundaries and the quality of translation,
respectively. There are similarities between the groups: the overarching goal for
the first group has been to develop methods for MT vocabulary construction, and
Publications in the latter group may also present new segmentation methods.
In this work, the main approach to achieve the goal of better translation into

MRL languages is through improving subword vocabulary construction using
morphological segmentation. For more on the task of morphological segmen-
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Figure 1.1. Partial language tree, showing the relations of the languages used in this thesis.
The Roman numbers under the languages refer to the Publications in which the
language is used.

tation, see Section 4.1. I begin with methods increasing the consistency of segmen-
tation, later transitioning to methods embracing the ambiguity of segmentation
as a source of noise for regularization. Three types of consistency in segmentation
for multilingual translation are identified: language-internal, source–target, and
target–target consistency. Language-internal consistency is so named because it
concerns only a single language, while the two other consistency types apply to
pairs of languages in multilingual settings.

Language-internal consistency means segmenting into units from a compact
vocabulary of maximally productive subwords that can be easily combined into
different words. Segmenting into linguistic morphemes is one way to achieve
language-internal consistency, but it is also possible to intentionally undersegment
frequently co-occurring sequences of affixes, or oversegment stems, as long as the
decisions are consistent between words.
Publications I and II propose an extension of the existing Morfessor segmenta-

tion tool—called Morfessor FlatCat—in order to improve language-internal con-
sistency using unsupervised and semi-supervised training. Morfessor FlatCat
applies a Hidden Markov model morphotactics to avoid using valid morphemes in
invalid contexts (e.g. segmenting the suffix “s” from the beginning of “swing”).
Publication III1, and Publication IV extend this work to a low-resource setting by
applying active learning. Publication VI combines rule-based and unsupervised
morphological segmentation into a hybrid method.
Cross-lingual consistency increases symmetry between languages. Source–

target consistency is most evident when the translated word is identical be-
tween source and target, making it possible to simply copy. However, the involved
words are typically either rare or not present at all in the training data, i.e. out-
of-vocabulary. Reasons for the scarce observations include rareness, novelty, or
specific domain of the word. Representations based on word-level statistics for
these difficult words are not reliable. While a special copy mechanism can over-
1And also a preliminary work (Grönroos et al., 2015) not included in the thesis.
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come this challenge in word-level models, subword models are able to achieve
copying without additional mechanisms. A rare word will be segmented into
short, high-frequency subwords. If the identical word is segmented the same way
in source and target, copying can proceed subword by subword.
Publication VII and VI tune Morfessor FlatCat towards matching segmentation

granularity between source and target languages. Publication X uses an ad-hoc
step of segmenting proper names into characters to allow the character level of a
hybrid word/character decoder to attend to individual source characters.
When training a one-to-many multilingual model, target–target consistency

arises between related target languages. Making cross-lingually consistent seg-
mentation decisions increases the use of subwords with similar string representa-
tions and meanings, whether they occur in cognate words or elsewhere. Cognate
Morfessor, proposed in Publication VIII, exploits automatically extracted cog-
nates to achieve a cross-lingually consistent segmentation.

Cross-lingual transfer is exploited both in subword segmentation and in
machine translation. In subword segmentation, moving from monolingual to
multilingual models improves segmentation consistency.2 In machine translation,
moving from models for a single language pair to multilingual models is moti-
vated by cross-lingual transfer, the regularizing effect of multi-task learning, and
raising the level of abstraction of the internal representations. One long-term
goal of this line of research is universal machine translation, in which a
single translation system is able to translate from any source language to any
target language. Another goal is the quest for an interlingual meaning rep-
resentation, which abstracts away anything specific to any particular subset of
languages. A third goal is low-resource translation. In this work I pursue
multilingual translation solely as a means to improve the quality of translation
into a particular low-resource language. In this setting, using multilingual meth-
ods allows exploiting the large resources of a related language. For more on the
scenarios for using multilingual machine translation, see Section 5.3.3.
In Publications VI and VII the cross-lingual learning is restricted to the tuning

procedure. In Publication XI multilingual NMT training is applied. Publication
VIII applies cross-lingual learning in two ways: as part of the proposed Cognate
Morfessor method and through multilingual NMT training. Publication IX takes
the importance of cross-lingual transfer further, with a highly asymmetrically
resourced multilingual machine translation task.
Consistency of segmentation is motivated when two criteria are met: each word

type is always segmented the same way, and the embeddings are the primary
means for the cross-lingual transfer. An alternative approach relies on the ability
of deep encoders to use context for disambiguating tokens. By explicitly gener-
ating noisy alternative segmentations during training, the model can be trained
to be robust to segmentation ambiguity.
Publication IX exploits both monolingual and parallel data using three types of

2For the purposes of Table 1.1, joint segmentation in which training corpora are simply
concatenated to train a single model are not considered to be a cross-lingual method.
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auxiliary tasks: (i) subword regularization is applied to both types of data, (ii)
a denoising sequence autoencoder allows training on monolingual data, and (iii)
back-translation is used to convert monolingual data into synthetic parallel data.
Using subword regularization on the parallel data is a form of data augmenta-
tion. In Publication XI the task of multimodal translation requires data with
three components: image, source language text, and target language text. Auxil-
iary data sets containing only two of these are augmented with synthetic data for
the missing component. Publication X enriches the data with labels from morpho-
logical analysis, and exploits the additional labels using a target-side multi-task
learning approach.
As a contribution to the evaluation of machine translation into morphologically

rich languages, Publication XII proposes a new evaluation measure.

1.2 Research questions

In later chapters of the thesis, the research questions will be referred back to
using the number in parenthesis.
Concerning the topic of optimizing subword vocabulary construction for trans-

lation into morphologically rich target languages, the following research questions
arise:
(RQ1.1) What is a suitable granularity of subword segmentation for the low-

resource task? What should the total vocabulary size budget be?
(RQ1.2) Once a vocabulary budget is given, how should it optimally be used?

How should the distribution of subwords look? Does it matter what
data-driven segmentation method is used? Should one focus on im-
proving the consistency of segmentation, or embrace variance in seg-
mentation as a source of noise for regularization?

(RQ1.3) How can learning setups, such as semi-supervised learning and active
learning, improve segmentation consistency and reduce the annotation
effort in morphological segmentation?

(RQ1.4) Can cross-lingual transfer improve segmentation consistency?
Concerning the challenges posed by MRLs for evaluation of MT:
(RQ2.1) Can subword information improve evaluation of translation into mor-

phologically rich languages?
Concerning which auxiliary tasks to use for machine translation:
(RQ3.1) When data is very scarce, is it better to train a small model on the

low-resource data, or a larger model using also the auxiliary data?
(RQ3.2) Which types of auxiliary data are most useful for the low-resource task?

Is cross-lingual transfer more useful than transfer from monolingual
tasks?

(RQ3.3) How important is language relatedness for the cross-lingual transfer?
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(RQ3.4) How to effectively exploit monolingual data? For which languages
should one add monolingual auxiliary tasks?

(RQ3.5) Augmenting with synthetic data raises concerns of distributional mis-
match between the natural and synthetic data. What is the effect of
adding large amounts of synthetic data in multimodal translation?

(RQ3.6) How should learning of different tasks be scheduled? Is it better to
train tasks sequentially one after the other, or all tasks in parallel at
the same time? Can both sequential and parallel transfer be combined
into a more effective schedule?

Concerning the quantity of data for machine translation training:
(RQ4.1) How does the amount of the data available for the low-resource lan-

guage affect the translation quality?

1.3 Structure of the thesis

This thesis touches on a wide variety of topics in the fields of natural language
processing and machine learning, including both statistical and neural machine
learning systems for applications both in the areas of morphological segmentation
and machine translation. This overview is intended as a presentation of both the
necessary background and the most important parts of the contributions, readable
as a coherent whole even without consulting the Publications. Some details of
the experiments have been omitted in the interest of brevity.
The overview is divided into six chapters. After the introduction, there are two

chapters providing the necessary background information on linguistics (Chap-
ter 2) and machine learning (Chapter 3). The linguistic background focuses on
the internal structure of words, and the machine learning background on the
methods used in this work. A reader familiar with these fields will be able to
skip over the chapters. When necessary, later chapters refer back to the relevant
sections using footnotes.
The following two chapters on subword segmentation (Chapter 4) and machine

translation (Chapter 5) concern the fields in which the contributions of this the-
sis belong. Both chapters begin with sections looking at the task, the relevant
background, and prior work. The last section of these chapters present the novel
ideas and primary results of the Publications. It is often difficult to draw a line
between contributions to the two fields, as the subword segmentation methods
are often applied to the task of machine translation. All the segmentation meth-
ods are placed in Chapter 4, but only the results of the intrinsic evaluations are
placed there. Results of evaluating machine translation are found in Chapter 5.
Chapter 6 concludes the overview with a summary of the findings and a look

at potential future work.
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“Languages differ essentially in what they must
convey, not in what they may convey.

(Roman Jakobson 1959)”

2. Linguistic background

This chapter discusses the structure of language, focusing on morphology and
the linguistic units of which words are composed. The computational approaches
to morphology are discussed later in Chapter 4, once the prerequisite machine
learning background has been presented in Chapter 3. In this chapter I also
argue that suitable basic units should be selected specifically for each language
and task.

2.1 The word

The term word is so central when speaking about language, that it can seem
nearly indispensable. The definition of the word appears to be intuitive at first
glance, but there are numerous subtle complications.1
Splitting sentences into words at white space may at first seem to work ad-

equately for English. However, the approach is not language-universal, failing
completely for languages such as Chinese that do not use spaces as separators.
Even for English, it becomes immediately obvious that some punctuation also
needs to be separated. Otherwise the “English,” with comma in the previous
sentence would differ from an instance of “English” that is not followed by a
comma.
Punctuation raises a number of issues concerning how to segment abbrevia-

tions (“E.U.”), contractions (“shouldn’t” vs. “should not”, “inasmuch as”), and
symbols e.g. for currency (“$9.99”). A particularly complex example is a date
range, e.g. “1.3.–22.4.2019.”, that could be considered anything between 1 and
11 words.
Hyphens are involved in many problematic cases, such as discoveries named af-

ter multiple people (“Einstein-Rosen bridge”) and loan words (“vis-à-vis”). Some
hyphenated words are compounds, e.g. “black-and-white” which in Finnish cor-
responds to the closed compound “mustavalkoinen”. In English, compounds can
in addition to hyphenation also be written in closed form (“stingray”) and open
1Brown et al. (1992) present a delightful account of some examples, in the form of a
dialogue between Simplicio and Salviati, in a nod to Galileo Galilei.
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form (“manta ray”).
Seeking an alternate definition, we might propose that a word must be possible

to utter on its own. A prototypical instance of a word, e.g. “run”, clearly fits the
definition: it can be used as a one-word command “Run!”. However, function
words such as “a”, “the”, and “of” would be excluded by this definition, and
many parts-of-speech would be left in unclear status.
Are these complications in the definition of the word of interest only to aca-

demics, or are there practical consequences? When building natural language
processing applications, the choice of basic units is a practical decision with po-
tentially severe effects on performance.
Linguistic annotations are also commonly produced at the granularity of words,

e.g. the Berkeley FrameNet project (Baker et al., 1998), and Universal Dependen-
cies (Universal Dependencies contributors, 2017). The decision is not universal,
e.g. The Parallel Meaning Bank (Abzianidze et al., 2017) treats multi-word con-
stituents as single tokens, and decomposes compositional compounds.
One of the fathers of modern linguistics, Ferdinand de Saussure uses the lin-

guistic sign instead of the word as the central unit in his Course in general
linguistics (de Saussure, 1916). The sign unites a signifier (a “sound image”)
with a signified concept. The signifiers can sometimes correspond to words, but
also other units. For de Saussure, different inflected forms are different signs,
but the same word. This notion of word is also called a lexeme. The lexeme
links a set of word forms to their meanings. The lexeme is represented by its
dictionary form or lemma. Dictionaries typically only index a single base form
of each lexeme, meaning that inflected forms cannot be directly looked up.
Several lexemes sharing the same lemma are called homonyms. For example

the lemma “bank” can refer both to a slope beside a body of water (“they pulled
the canoe up on the bank”) and a financial institution (“the investment banks
were responsible for the financial crisis”). These can be distinguished e.g. using
sense keys from the lexical database WordNet (Princeton University, 2010), in
these examples bank%1:17:01:: and bank%1:14:00:: respectively.
The set of symbols used in language is ever expanding. New signs are coined

through the process of word formation. Signs called morphemes are the min-
imal units of meaning or grammatical function. In word formation, morphemes
are composed together to form new signs. Morphological processes can be divided
into two categories: inflection and derivation. Inflection describes how words
adapt their form to their context. The available categories depend on the lan-
guage and the part-of-speech. Some examples are number, case, person, mood,
and tense. Inflection does not change the part-of-speech of the word, and the
change in meaning is relatively regular.

Derivation alters the meaning of the word more substantially, for example the
prefix “un++” in “unreasonable” inverts the meaning of “reasonable”. The latter
also shows how derivations can be chained, as “reasonable” is already a derivation
of “reason”. The latter derivation is an example of how derivation can change the
part-of-speech: the suffix “++able” turns a noun into an adjective. Compound-
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ing is a type of derivation in which parts with the potential to stand freely are
merged into a compound. Some languages use open compounds, i.e. compounds
are written with a separating space between the parts. Other languages join the
compound parts, sometimes adding hyphens or linking morphemes, or applying
phonetic changes. This typological distinction is not strictly binary, e.g. En-
glish generally prefers open compounds, but exceptions, such as “bookstore” and
“family-owned”, are common. Hyphenation is also used with some prefixes, e.g.
“semi-supervised”.

Meaning. According to de Saussure (1916), the value (valeur) or meaning of
signs only arises in their relation to other signs. It is not meaningful to speak of
the value of a sign in isolation. As an example, in English “sheep” refers to the
animal, while its meat is called “mutton”. In French, both concepts are referred to
by the same word “mouton”. Even though “mouton” and “mutton” are cognate,
i.e. share an etymological origin, their value differs due to the differences in
the way the semantic space is subdivided into concepts. Value is thus related
to translational ambiguity, in which a single concept in a source language is
translated into multiple different concepts in the target language, depending on
the context.
De Saussure divides the relations between signs into two categories: syntagmatic

and paradigmatic. Signs in a syntagm are found co-occurring with each other,
often in a particular order or position relative to each other. Signs in a paradigm
occur in shared contexts, but are often mutually exclusive in a single example.
The sign is arbitrary, meaning that there is no way to determine the meaning

from the apparent properties of the signifier, i.e. how it is written or pronounced.
One exception is the class of onomatopoeic words, e.g “bang!” These words
describe a sound, and are chosen so that they mimic it.
In general there is no such resemblance, and indeed words with similar appear-

ance can have completely different meaning, e.g. “porpoise” and “purpose”. The
mapping from symbols to meanings must therefore be learned from how they are
used, or more specifically from the contexts in which they appear. This idea was
restated by John Rupert Firth (1957) in his well known distributional hypothesis

“ You shall know a word by the company it keeps. ”
Word-internal structure. According to Zellig Harris (1955), the distributional
hypothesis applies to morphemes as well as words. Language is not only symbolic,
but also compositional. New larger symbols can be constructed from sequences
of smaller symbols. A distinction can be drawn between meaning-bearing and
non-meaning-bearing symbols. The arbitrariness of the sign implies that the
smallest units, characters and phonemes, are not meaning-bearing.
Figure 2.1 shows a hierarchy of linguistic units. To start with the smallest units

of written language, letters do not carry meaning in alphabetic languages. Se-
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Figure 2.1. Linguistic units of varying sizes.

quences of letters can of course carry meaning, but the individual letters do not.2
In a similar way as morphs are concrete surface realizations of abstract mor-
phemes, in the field of phonetics, phones are concrete realizations of phonemes.
Syllables are units of prosody, defined by the pronunciation. They do not carry
meaning.
Morphemes are divided into stems and affixes. A prototypical stem is the

substring of the lemma shared by all inflections of a word. In case of stem allo-
morphy, the stem may undergo some changes in certain inflections. A lexeme can
thus have several stems. Affixes are further divided into prefixes, suffixes, in-
fixes, and circumfixes. The term subword is used in natural language processing
(NLP) for any concrete units that are smaller than words, including syllables and
morphs, and sometimes characters. The use of this term is typically an indication
that there is no emphasis on producing meaning-carrying units, although some
subwords may correspond to meaning-carrying units by chance.
When composing meaning-bearing units into larger meaning-bearing units, the

degree of compositionality may vary. In some cases the meaning of the whole is
easily derived from the meaning of the parts, but in other cases the meaning of
the whole is, to some degree, non-compositional. A non-compositional unit may
be more appropriate to model as a whole, rather than subdividing it into the
parts that it appears to consist of. When the meaning of an expression becomes
sufficiently non-compositional, it is lexicalized, or turned into a new lexical unit.
For example Middle English “hamlet” could be analyzed through derivational

morphology as its stem, from Old French “hamel” (little village) is cognate to
Middle English “hām” (home) (Harper, 2019). While the diminutive suffix “++let”
is still identifiable, the morpheme “ham” is in modern use found mainly in names.
Therefore, it may be preferable for practical purposes to analyze the word as a
single unit instead. In general, the optimal segmentation for an application may
not coincide with the linguistically most correct segmentation.
2Characters extend the class of letters to symbols other than the alphabetic ones.
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Compositionality of meaning applies also to units larger than words. Most
phrases have a large degree of compositionality. Idioms, e.g. “bite the bullet”,
are an exception, being completely non-compositional.

Sentence level structure. A universal property of natural language3 is that in
order to communicate a message, it must be encoded as a linear sequence of
symbols. When communicating in speech, the sequential nature is imposed by
the passage of time. Written language also has a specific order in which the
symbols should be read.4
The symbols in the sequence encode both concepts and the relations that con-

nect the concepts to each other. The connecting relations consist of both the roles
that the concepts play and the direction of the relation. There are two distinct
ways in which this information can be encoded in the sequence: One way uses
the choice of symbols, i.e. the paradigmatic relations of the signs. The other way
uses the order in which the chosen symbols are placed, i.e. their syntagmatic
relations.
Languages vary in how they make use of these two ways of encoding information.

Languages with a strict word order, such as German and English, make a clear
distinction between the two by using symbol choice to encode concepts and word
order to encode the relations. In languages with more flexible word order,
such as Finnish and Latin, both types of information are encoded by symbol
choice. This is accomplished by introducing new symbols, morphemes, which are
attached to the symbols encoding the concepts. Inflecting for case is an example
of marking relations through morphology. As long as the attachments are not
broken, the large-scale structure of the sequence can be reordered. The reordering
can cause a change of emphasis, but does not substantially alter the meaning.
For example, in the English sentence “The dog chases the cat in the basement”,

the order of “dog” and “cat” determines which is the subject and which the object.
One translation of the sentence into Finnish is “Koira jahtaa kissaa kellarissa.”
However, the word order in the Finnish sentence can be modified radically without
changing the meaning of the sentence, e.g. “Kellarissa kissaa jahtaa koira.” The
cat “kissa” is marked as the object by the partitive case, not by its position. The
location is indicated by the function word “in” in English, but by the inessive
case “++ssa” in Finnish.
The grammar of a language describes the rules for which roles must be filled,

and in which order. These rules vary between languages. Grammar is divided
into two parts—morphology and syntax—at the level of words. Morphology and
syntax are similar to each other, in that both consist of lexical units and rules for
combining them, and both contain productive aspects. Di Sciullo and Williams
(1987) argue that the boundary between the two leaks to some extent, with the
word being a bottleneck in the passage of information from the morphological to
3In constructed languages, the Unker Non-Linear Writing System (UNLWS) (Fink and
Sai, 2002) is an interesting exception.
4While detours through references such as footnotes are possible in writing, the reader
must choose to either embark on the detour or continue with the main sequence.
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the syntactic.
Regarding units larger than words, a phrase is a group of words that function

as a constituent in a sentence. All the dependents of the words in a phrase
must be included in the phrase. It should be noted that in machine learning, a
statistical phrase is any (frequently occurring) sequence of words, without regard
for constituency.

Distributions of linguistic units. The choice of basic units has a striking effect
on the observed distribution. For alphabetic languages, the number of distinct
letters is small (typically 20–40), and any document of reasonable length is likely
to contain all of them. The number of words on the other hand is unbounded,
and new ones continue to be encountered even after observing a substantial cor-
pus. A famous observation called Zipf’s law (Zipf, 1932),5 states that the number
of occurrences of words tend to follow a power-law distribution: the kth word
in a list sorted by frequency has a frequency inversely proportional to k. One
consequence is that there is a long tail of rare words. The distributions of sub-
words lie somewhere between these two extremes, with the particular shape of
the distribution defined by the method of segmentation.
Languages vary in the granularity of words, as a result of different balance

between use of symbol choice and order for encoding information, and also as a
result of orthographic differences. Therefore I argue that rather than defaulting
to words, suitable basic units should be selected for each language and task. The
word is an end result of linguistic analysis, rather than its starting point.

2.2 Linguistic typology

Linguistic typology characterizes and classifies languages according to their struc-
tural and functional patterns. Recently linguistic typology has been approached
also by means of machine learning (Östling and Tiedemann, 2017a; Malaviya
et al., 2017; Asgari and Schütze, 2017). While there are several typological as-
pects that can be considered, three of them will be discussed here: word order,
degree of synthesis, and degree of fusion.
The primary word order typology concerns the order of subjects (S), objects

(O), and verbs (V). The most common orders are SOV and SVO (Dryer, 2013).
The ordering of other sentence constituents, such as adjective–noun pairs, can
also vary between languages. Languages with free word order tend to use mor-
phological markers, e.g. inflecting for case (McFadden, 2003).
The degree of synthesis concerns the degree to which the atomic units of sen-

tences are composed into longer, more complex words. Isolating and analytic
languages have a preference for freestanding words. Grammatical relations are
marked by word order or by parts-of-speech such as prepositions. This results
in a low morpheme-to-word ratio. Chinese, Vietnamese, and English are exam-
5Illustrated in Figure 5.6 on page 137.
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ples of analytic languages. Synthetic languages have a high morpheme-to-word
ratio. Grammatical functions are marked through morphology. Morphology is
not limited to function categories, but can also express content. Polysynthetic
languages, such as Inuit, use morphology to such a large extent that individual
words can function as complete utterances. Languages with very high morpheme-
to-word ratios are called morphologically rich languages (MRL).
The degree of fusion describes how much morphs are transformed by in-

teraction with other morphs. In agglutinative or concatenative morphology,
morphemes remain unchanged when concatenated into a word. In fusional
morphology, consecutive morphemes become fused together. Alternatively, one
morpheme in a fusional language can be considered to mark several morphologi-
cal features, also called formative exponence (Bickel and Nichols, 2013). In-
troflective morphology refers to inflections marked by stem change that is not
easily separable into concatenated morphemes, seen e.g. in irregular inflections
such as “sing–sang”. Morphological segmentation is better suited for agglutina-
tive languages, as fusion can make the exact location of morph boundaries fuzzy.
It should be noted that no language is completely of one type. While entire

languages are often classified based on their predominant type, it is more precise
to refer to the types of individual phenomena within a language. For example
in German, five different types of morphological phenomena can be observed:
isolating: “ich werde machen” (I will do)
agglutinative: “ziehen” (pull),

“anziehen” (put on, dress),
“miteinbeziehen” (include)

fusional: “Kindes” (of the child)
(in which the ending ++es marks number, gender, and case)

introflective: “tragen” (carry) – “trug” (carried),
“Mutter” (mother) – “Mütter” (mothers)

compounding6: “Kleinstadt” (small town), “blaugrün” (blue-green),
“Fleisch-fresser” (carnivore)

(From Skalička (1979), reproduced by Igartua (2015))

Bound and free morphemes. A free morpheme can stand on its own as a word.
A bound morpheme must always be attached to another morpheme. There is
always at least one free morpheme in a word, but there can also be multiple. The
stems are free morphemes, while the affixes are bound. Generally compounds are
formed by combining several free morphemes, but there are exceptions, such as
“cranberry”, where the fossilized term “*cran” cannot stand alone.

Open and closed classes. There are many ways that lexical units can be divided
into classes based on their usage, such as part-of-speech classes. Regardless of
6Skalička (1979) call this type polysynthetic, but I would not use the term for simple com-
pounding, reserving it for more complex synthesis involving e.g. incorporation between
verbs and nouns.
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which classification is used, the classes can be described using the property of
openness. New words are created as needed when novel concepts in the world
need describing. An open class admits new members when language is extended,
while a closed class can be enumerated exhaustively. In practice, the distinction
is not strictly categorical: classes can be more or less likely to gain new members.
As an example of extending a class from the closed end of the spectrum, consider
the proposed gender neutral pronouns such as “zie”.
Closed classes tend to express grammatical function, e.g. the parts-of-speech

articles, pronouns, and prepositions, or the morphemes inflecting for number,
gender, and case. Open classes carry more of the semantic information. Examples
include content word parts-of-speech such as nouns, verbs, and adjectives, the
stem and prefix morpheme classes, and the class of compound words. Proper
names, loan words, technical terms, and portmanteau words (e.g. “brexit” from
“Britain” and “exit”) are some examples of open classes of words frequently
gaining new members.
Even the meaning of nonce words, previously unseen words coined for a specific

purpose, is understandable, based partly on inference using the single sentence
context they are seen in and partly based on the morphology of the word (Štekauer,
2002).

Allomorphy is a phenomenon in which a single abstract morpheme can be rep-
resented with several different surface morphs. The allomorphs have the same
meaning but different surface strings. E.g. in Finnish, vowel harmony determines
whether the inessive is marked by “++ssa” or “++ssä”. “Talossa” contains back
vowels in the stem, while “kylässä” contains front vowels. While the difference
between the allomorphs is phonetic, not semantic, the allomorphs nevertheless
have distinct context distributions. Allomorphy is not restricted to affixes, but
introflective changes such as vowel and consonant alternation also affect stems.

2.3 Theories of morphology

There are three well-known approaches to modeling morphology: Word-and-
paradigm, Item-and-arrangement, and Item-and-process (Hockett, 1954).
The oldest of the three, Word-and-paradigm (WP), only addresses inflec-

tional morphology. It describes a paradigm using two components: an inflection
table and a list of lexemes belonging to the paradigm. The inflection table shows
the paradigmatic relations of all inflected forms of a prototypical lemma. All lex-
emes in the list can be inflected by analogy with the table. The analogy must be
exact; even a single-letter change necessitates defining a new (sub)paradigm. For
example “play” and “enter” belong to the same paradigm: “play–plays–playing–
played–played” and “enter–enters–entering–entered–entered”.

Item-and-process (IP) describes morphology as a set of processes that trans-
form one (or several) item(s) into a new item. For example, we may describe a
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process deriving nouns from verbs as

[X]Verb! [X+er]Noun.

While the example only appends a suffix, processes can perform arbitrarily com-
plex transformations, e.g. the vowel replacement necessary for transforming
“take” to “took”. It should be noted that the process describes a transforma-
tion in configuration, not in time or historical development. Nevertheless, IP
places word forms into a directed graph, with certain forms being more central
than others.

Item-and-arrangement (IA) in its core describes words as a set of morphs
and their arrangement. The arrangement is restricted by morphotactics, describ-
ing which morphs may occur together and the order in which they must be placed.
IA is well suited for languages using agglutinative morphology, in which morphs
are concatenated together without change. Allomorphy, fusion, and other forms
of irregularity pose challenges for IA. If phonological rules require a morph to
be replaced with an allomorph due to the presence of certain phonemes in other
items, the interaction of morphs is not limited to the arrangement. To address
allomorphy, abstract morphemes can be used as the items, with an additional
allomorph selection step given the arrangement.
Irregular forms pose a challenge even under this revised model. For example

the “take–took” inflection has no identifiable suffix marking the +past morpheme.
Some of the possible solutions (Hockett, 1954) include analyzing “took” as

1. a single morpheme took, distinct from take,
2. a portmanteau morph combining take and +past,
3. an allomorph of take in sequence with a null morph as an allomorph of

+past,
4. a discontinuous allomorph “t-k-” of take and an infixed allomorph “-oo-”

of +past, or
5. (limited to pronunciation) as “take” and a replacive morph /ʊ/  /eɪ/.

Only the fourth option is acceptable according to Hockett (1954). He considers
the first unacceptable, as the analysis of the irregular form is not parallel with
regular past tense forms. The second and third he considers to be arbitrary: Why
should not regular forms be analyzed as portmanteaus? Why should +past
become the null morph rather than take? The fifth is inconsistent with the
notion that morphs should be composed of phonemic material.
Methods for morphological segmentation, such as the ones proposed in this

thesis, rely implicitly or explicitly on the IA model.

2.4 Relations between languages

Languages are constantly but slowly evolving. To some extent this is due to a
changing language use environment necessitating innovation of new words, ne-
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ologisms. Some of these will propagate from one language to another in the
form of loan words. Another contributing factor is the fact that for a language
to be carried into the future, it must be learned by new generations of language
learners, some of which are already speakers of another language.
The field of historical linguistics is concerned with the evolution of languages

and their relations. Languages are classified into families by finding systematic
similarities. Within each family, languages are grouped into subfamilies if they
share significant innovations. For a partial language tree covering the languages
used in this thesis, see Figure 1.1.
In the case of the Romance language family, historical linguistics benefits from

the parent language (Latin) having very extensive records. In cases where avail-
able records are scarce, or even if the parent language is unattested, the compar-
ative method can be used to reconstruct the parent language. Reconstruction
is achieved by comparing cognates of the daughter languages and undoing the
regular sound changes. Protolanguages with attempts at reconstruction this way
include Proto-West-Germanic and Proto-Indo-European (Ringe, 2017).

Cognates are the primary tool for the comparative method in historical linguis-
tics. Cognates are words in different languages with a shared etymological origin.
An ideal cognate pair is similar in three ways: orthographically (i.e. represented
as identical or nearly identical strings), semantically (i.e. refer to the same or
similar concepts), and distributionally (i.e. are used with similar frequency in
similar contexts). The word cognate comes from the Latin, meaning “born to-
gether”. Care must be taken with words with similar string representation but
different semantics, called “false friends”. E.g. Finnish “vaimo” (wife) should not
be translated as Estonian “vaim” (spirit, ghost).
Cognates are useful in multiple ways also outside of historical linguistics. Cog-

nates have been identified as easy vocabulary items helpful for learning a second
language (de Groot et al., 1994).
For the comparative method to be effective, proper names and loan words

are typically excluded. In natural language processing it is common to use a
broader definition of the term cognate (e.g. Kondrak, 2001), accepting proper
names and loan words as cognates. With the broad definition, names of persons,
locations, and other proper names yield cognates for any language pair written
in the same alphabet. However, for many language pairs, these broad cognates
are not inflected. Cognates are more abundant in related languages, and when
the languages are also morphologically rich, it becomes necessary to model the
similarities of inflection between the cognates.
The subtask of cognate extraction has seen much research effort (Mitkov et al.,

2007; Bloodgood and Strauss, 2017; Ciobanu and Dinu, 2014). Most methods
are supervised, and/or require rich features. Some work on cognate identification
from the perspective of historical linguistics includes Rama (2016) and Kondrak
(2009). The aim is to determine whether cognate candidates truly share an
etymological origin or are merely superficially similar.
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“All models are wrong, but some are useful
(George Box, 1976)”

3. Machine learning background

Machine learning (ML) is a field of science that studies how to program machines
to modify their behavior based on experience learned from observing data. The
programmer supplies prior information by selecting the model family, the algo-
rithm for learning the parameters, and possibly some hyper-parameters. The
concrete model is selected from the model family by fitting it to some training
data. This differs from traditional programming, in which the behavior of the
machine is fully determined by the programmer.
Artificial intelligence (AI) is a related concept, describing the creation of ar-

tificial systems that exhibit some characteristics of intelligence. As intelligence
is difficult to define, AI is a vague and moving target, often referring to tasks
in which machines are not yet proficient. In the early days, AI was commonly
built by hand-crafting rules, but currently it is typically implemented through
machine learning. AI in which logical rules are used for manipulating symbols
is sometimes referred to as Good Old-Fashioned Artificial Intelligence (GOFAI).
Both the objects and their relations are described as discrete symbols, which are
collected into a knowledge base. The dependence on a knowledge base makes the
approach labor-intensive and brittle. Rule-based AI is still used in some niche
applications, such as controlling opponents in computer games.
Statistical and probabilistic methods are applied in machine learning. ML can

be contrasted against statistics in general, by considering how the end result is
used. In traditional statistics, humans gain insight from examining the optimal
model parameters directly. In ML, the learned model is typically applied to
some new data in an automatic or semi-automatic way, to make a prediction or
decision. Huge, overparameterized models are undesirable in statistics, as they
are too large to be easily interpreted. In machine learning, such black box models
are more acceptable.
ML has enabled systems that come a long way towards solving complex tasks

that are difficult to understand and therefore difficult for programmers to write
rules for. One characteristic of ML systems is the ability to learn behavior that
was not intended by the programmer. This can be both a strength and a weakness.
It is a strength when the system learns from experience to behave correctly in a
situation that was not foreseen by the programmer, but was either present in the
training data or could be inferred from related situations. It can be a weakness

37



Machine learning background

when it is important for the system behavior to be very predictable.
The following chapter presents the machine learning background necessary to

understand this thesis. The chapter is based on several textbooks (Manning
and Schütze, 1999; Bishop, 2006; Koller et al., 2007; Alpaydin, 2010; Russell
and Norvig, 2010; Goodfellow et al., 2016). The focus of the chapter lies on
parametric machine learning. A parametric machine learning method requires
three components: a model, a loss function, and a learning algorithm. I will start
by introducing the types of tasks that can be solved using machine learning, then
describe how to construct models, and finally how to fit the models to data using
the loss and the learning algorithm.

3.1 Types of machine learning tasks

In classification the aim is to assign to each input a label from a finite set of
discrete labels. Regression instead outputs one or more real numbers.

Classification f :Rn 7! {1, . . . ,V }; Regression f :Rn 7!R (3.1)

Clustering is an unsupervised task, in which similar examples are grouped
together. The groups are identified by cluster labels, but they are not meaningful
like the classification labels. The clustering is considered equivalent even if the
cluster labels are permuted, as long as the same examples are clustered together.
In order to turn the cluster labels into the same kind of labels as in classification,
additional analysis is needed to find a mapping from cluster labels to meaningful
labels. For example, even if the clustering algorithm has placed “f” and “v” in
the same cluster, it still requires additional information to identify them as being
labiodental fricatives.
In sequence generation, the output is a vector of predictions t = (t1, . . . , tJ).

Sequence generation can be implemented as repeated autoregressive classification.
In each timestep, the current decoder state is used as input to a classifier, which
has as its labels the symbols of the output vocabulary. The classifier label is
emitted, and also fed back in to the network to advance the decoder state. In
sequence generation, the output symbol is selected from a vocabulary with fixed-
size t j ∈ L; |L| = V . The symbol is selected from a categorical distribution,
which is parameterized by a vector of V probabilities, summing to one.
When drawing a single sample, the categorical distribution and the related

multinomial distribution are the same. On repeated draws, the categorical
distribution yields an ordered sequence, while the multinomial yields the (un-
ordered) counts of events instead. A categorical distribution can be produced
from an unnormalized vector output using the softmax function

softmax(x)i = exp(xi)∑V
k=1 exp(xk)

. (3.2)
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3.2 Parametric modeling

Three components are needed for parametric machine learning: a model, a loss
function, and a learning algorithm. The model distribution is parametric if it is
defined by a predetermined number of parameters. The values for the parameters
are determined through optimization, but their number does not change. The
model capacity is fixed in advance.
Classic statistical parametric models typically use a small number of well-known

distributions defined by a small number of parameters, e.g. Gaussian distribu-
tions. Also neural networks can be viewed as parametric models. Even though
the number of parameters can be very large, and the values of the parameters are
not interpretable as is the case with the well-known distributions, the number of
parameters is nevertheless fixed.
The alternative is to have a nonparametric model, where parameters are

added and removed as needed. The model has a flexible capacity. For example,
if a subword lexicon of variable length is learned, and each subword has some
parameters (e.g. counts) associated with it, adding a new subword expands the
model by the parameters for the new subword.
As an extreme example of a nonparametric model, consider nearest-neighbor

models. All examples in the entire training data are needed to determine the
model distribution.

3.2.1 Graphical models

Generating a sequence of natural language is a multivariate prediction problem.
A naïve solution divides the multivariate prediction problem into multiple uni-
variate predictions, i.e. learns a per-position classifier s 7! t j and runs it J times
independently. This approach is poorly suited to domains such as natural lan-
guage, where output variables have strong and complex dependencies. For exam-
ple, in English adjectives seldom follow nouns. It is therefore important to be
able to predict the sentence as a whole, using structured prediction.
Graphical models are a way to represent a complex multivariate distribution

as a product of local factors on smaller subsets of variables. The vertices of the
graph correspond to random variables, while the edges represent a direct influ-
ence between the connected random variables. The graph structure encodes a
factorization of the probability density, or alternatively a set of conditional inde-
pendence relationships present in the distribution. A good factorization results
in a compact, easily learned parameterization.
Based on the form of the learned probability distribution, graphical models

are divided into generative and discriminative models. The distinction has a
counterpart in the graphical formalism used: it’s typical to use directed graphs
for generative models and undirected graphs for discriminative models.
In generative learning, the joint distribution P(X ,Y ) of features and labels

is modeled. It is called generative learning because complete new data points
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Figure 3.1. Relations between four graphical models.

can be generated by sampling from the joint distribution. A directed graphical
model, presented as a directed acyclic graph (DAG), describes how a distribution
factorizes into local conditional probability distributions. The direction of the
arrows determines the generative story: the order in which variables are drawn
to generate a sample from the data. As the probability of the whole model is a
product of conditional probabilities, it is properly normalized.
In discriminative training, the conditional probability of the labels given the

features P(Y |X ) is modeled directly. This distribution is the minimal needed for
classification. In undirected models, the probability distribution is a product of
factors Ψ. Each factor Ψa depends only on a subset of the variables Y a. The
factor can be thought of as a measure of how compatible the assigned values Y a

are with each other. There is much freedom in defining the factors, as they don’t
need to be probability distributions: it is sufficient that they are non-negative
scalars. As a downside, normalization is needed to ensure that the distribution
sums to one. The normalization is achieved using a partition function Z, that is
a summation over exponentially many possible assignments to Y . As such, Z is
in general intractable, and much of the work on undirected models is focused on
approximations for it.
A generative model must be able to represent all patterns in X , regardless of

their usefulness in predicting Y . The features may be connected by complex
dependencies, so constructing a probability distribution over them can be chal-
lenging and lead to intractable inference. Ignoring the dependencies simplifies
the model, but can lead to reduced performance. Discriminative training is free
to disregard any non-informative patterns, as it only cares about the mapping
from X to Y . Dependencies that involve only variables in X are simply ignored.
Global structure is more important for generative models. For discrimination,
it may be enough to recognize salient features, e.g. the nose and eyes for faces,
while a generative model also needs to place them in the correct relation to each
other.
The Markov property is a very useful simplifying assumption for sequence
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modeling. For a sequence structure, a Markov model of degree n conditions the
current prediction only on a fixed window of n previous variables. Given the
fixed window of observations, the prediction is assumed to be independent of
older history

P(t j | t0:( j−1))≈ P(t j | t( j−n):( j−1))= P(t j |pa(t j)) (3.3)

For a general structure, the local Markov assumption states that each variable
t j is independent of its nondescendants given its immediate parents pa(t j).
Statistical language models (LM), such as the n-gram LM, make use of the

Markov assumption to simplify estimation of parameters and to control sparsity.
While early neural language models (Bengio et al., 2003) also made use of the
Markov assumption, modern ones (Mikolov et al., 2010) typically do not, in order
to model arbitrarily long dependencies.

The hidden Markov Model (HMM) is a latent variable generalization of the
Markov model. The state sequence y1, . . . , yI is not observed, and must be inferred
based on the observed features x1, . . . , xI . Each state yi emits an observation
xi from the conditional distribution P(x|y). The transitions between states are
determined by another conditional distribution P(yi|yi−1). The resulting joint
probability of the observation sequence is

P(x1, . . . , xI )=
I∏

i=1
P(yi|yi−1)P(xi|yi). (3.4)

The HMM generalizes the naïve Bayes classifier to sequence modeling. The
standard inference algorithms for HMMs are the Viterbi, forward, and forward–
backward algorithms. The Viterbi (1967) algorithm is a dynamic programming
algorithm for computing the most probable state sequence for a given sequence of
observations. The related forward algorithm instead computes the marginal prob-
ability of an observation sequence, accounting for all possible state sequences. The
forward–backward algorithm, also known as the Baum-Welsh algorithm (Baum,
1972), is an application of the Expectation-Maximization algorithm1 for estimat-
ing the parameters of an HMM when only observation sequences are available.

Conditional random fields (CRF) are probabilistic models for discriminative
structured classification. They are expressed as undirected probabilistic graphi-
cal models. CRFs can be seen as generalizing the logistic regression classifier to
structured outputs. In the linear-chain CRF, the variables are arranged se-
quentially. CRFs can also be used with more general graphical structures. Linear-
chain CRFs bear a structural resemblance to hidden Markov models, while relax-
ing the assumption of the observations being conditionally independent given the
labels, which makes them usable with rich, partly redundant features. Figure 3.1
places the HMM and CRF models in a wider family of graphical models.
1See Section 3.5.1.
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3.2.2 Neural models

Deep learning—the use of neural networks with many layers—has enjoyed great
success since the 2010s, beginning when Krizhevsky et al. (2012) won the ImageNet
object recognition challenge using a convolutional network. However, neural
methods had a very long history before that, including applications to Natu-
ral Language Processing (NLP). Modern deep learning builds on a long tradition
of work under many names: cybernetics in the 1940s-1960s, connectionism in the
1980s-1990s, and finally deep learning after 2006. Let us review some of that
history.
The term artificial neural network (ANN) implies a perspective of biomimi-

cry. Biological neurons acted as inspiration for the development of artificial neu-
rons, and some work has been used to improve understanding of brain function.
The nodes of the ANN act as analogs to neurons, while the weighted connections
between the nodes act as synaptic junctions. The McCulloch and Pitts (1943)
neuron was an early model of activity in the brain. It is a linear model capable
of performing two-class classification, after a human operator has set the weights
to achieve the desired function. Building systems that aim to replicate human
or animal brains is no longer a central aim of current neural network research.
Instead models are designed so that they perform well on tasks, regardless of
biological plausibility.
The perceptron (Rosenblatt, 1958) was the first model capable of learning its

weights when exposed to training data. The adaptive linear element (ADALINE)
(Widrow and Hoff, 1960) was trained using an algorithm that is a special case
of stochastic gradient descent (SGD). SGD and its variants are still the most
commonly used training algorithms. The example task used by Widrow and Hoff
(1960) was language related, namely a toy task of optical character recognition,
classifying the characters T, G, and F using a 4-by-4 pixel grid.
The early systems had limited success, even though many of the necessary in-

novations had already been made: backpropagation (Rumelhart and McClelland,
1985), nonlinearities, stochastic gradient descent, and deep networks. Success
was delayed for practical reasons. More computing power and memory enabled
two kinds of breakthroughs: larger model sizes benefiting more from depth of rep-
resentation, and wide-ranging experimentation with training procedures, leading
to insights about proper initialization (Glorot and Bengio, 2010) and regulariza-
tion2 of neural networks. Large amounts of training data are generally required
to reach high performance. Only recently have advances been made in methods
for training neural networks with smaller data. The use of GPU computing to
parallelize linear algebra computations (Steinkraus et al., 2005) and availability
of programming libraries such as Theano (Bergstra et al., 2010; Bastien et al.,
2012) and PyTorch (Paszke et al., 2017) have also contributed to the success of
deep learning. Recently, techniques for training ever deeper networks have been
2See Section 3.3.4 for more on regularization.
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Figure 3.2. Approaches to sequence modeling in neural networks. The colors and dashing
indicate weight sharing through time. Sequential indicates the number of opera-
tions per layer which must be performed in sequence, showing the potential for
parallelization. Min layers shows the minimum number of layers needed to cover
arbitrary dependencies in a sequence of length |s|. k is the width of the convolution
kernel or the arity of the tree. The shaded areas show the span covered by one
(darker) and two (lighter) layers. Some connections for self-attention are omitted
for clarity.

a driver for improved performance. These techniques include increasing effec-
tive minibatch size using gradient accumulation, increasing depth through model
parallelism (Coates et al., 2013), low precision computation (Courbariaux et al.,
2014), and improving gradient flow using transparent attention (Bapna et al.,
2018).
Early methods achieved depth by combining unsupervised pretraining with su-

pervised training (Bengio et al., 2007). The depth was added incrementally, by
freezing previously trained layers and adding a new, deeper one to be trained.
The use of unsupervised representation learning is related to the transfer learn-
ing3 approaches that are still very popular, as evidenced e.g. by the wide use of
contextual representations from pretrained BERT (Devlin et al., 2019) models in
downstream NLP tasks.

Approaches to sequence modeling
A defining characteristic of natural language is that it is expressed as variable
length sequences. This distinguishes natural language from domains such as
image processing, where typically images of fixed pixel dimensions are used.
Figure 3.2 compares neural architectures for sequence modeling. The simplest

neural network architecture is feed-forward (FF) networks, which have an input
of a fixed size, and do not contain loops providing feed-back connections or more
advanced forms of memory. The trivial way of processing with a FF network ap-
plies it to each timestep of the sequence separately. However, this unsatisfactory
approach results in independent predictions for each timestep, with no sequence
modeling.
3See Section 3.4.2 for more on transfer learning and multi-task learning.
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To give the network some ability to use temporal information, a sliding win-
dow over the input can be used. As the width of the window is fixed, a FF
network is applicable. The architecture is called Time Delay Neural Networks
(TDNN) (Waibel et al., 1989), and it computes a 1-dimensional convolution
over the time axis. 2-d convolutions are used in the image and spectral domains.
Convolutional networks exploit temporal and spatial structure through parame-
ter sharing: in each timestep the same weights are applied to the positions of the
window. A single layer TDNN is similar to a continuous version of an n-gram, as
both predict the probability of the i:th token from a fixed length history i−n : i−1.
In deep convolutional networks, the deeper layers combine windows of features
produced by the lower levels, which increases the span of inputs that are covered.
A deep convolutional network is thus able to use more distant information than
a shallow one. In order to connect all inputs of a sequence of length |s| to each
output requires a stack of |s|/k convolutional layers with contiguous kernels of
width k, or logk(|s|) in the case of dilated convolutions.
If the sequence represents the leaves of a known tree structure, e.g. a parse

tree produced by an external parser, then the nodes of the neural network can
be connected according to this structure. A recursive network can be used for
composing a single vector by propagating information from the leaves to the root.
All the compositions share parameters. Compositions in the same layer can be
performed in parallel, but the minimum number of layers needed to compose the
entire sequence depends on both the length of the sequence and the shape of the
tree: logarithmic in the best case of a balanced tree, and proportional to the
length of the sequence in the worst case of a left/right-branching tree.
A downside of recursive networks is that the structure of the tree cannot be

learned during training. If we want to be able to learn a structure, a different
approach is required. An elegant solution to this problem is provided by the
gating mechanism

y=σ(Wc+b)⊗ x (3.5)

where W are the weights of the gate, c is the context determining the operation of
the gate, b is the bias vector, and x is the input. The sigmoid σ outputs a value
between zero and one. Multiplying the input elementwise with these numbers
allows the gate easily to learn to either output the value unchanged (saturating
to one) or suppress the output entirely (saturating to zero). Closing the gate
effectively prunes the connection from the network. Neither the activation nor
the gradient will pass through the closed gate. The learning starts from a fully
connected network, with unnecessary connections softly pruned away. This type
of pruning cannot reduce the number of parameters or the computational com-
plexity. As the mechanism is fully differentiable, it in effect allows the network
to learn the desired structure from the data.

Recurrent neural networks (RNN) (Elman, 1990) take a different approach
to sequence modeling, conditioning the output on not only the input si but also
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a representation of the entire preceding history encoded in a recurrence vector

hi = f (si,hi−1). (3.6)

A single layer has access to the entire input, but processes it sequentially, which
limits the use of parallelism for speeding up computation. While recurrence
makes it theoretically possible to model arbitrarily long dependencies, in practice
long paths lead to problems such as exploding and vanishing gradients.4 In
order to address these challenges, advanced recurrent units employing the gating
mechanism have been introduced. These include the Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU)
(Chung et al., 2014).
A single RNN reads the sequence in only one direction, which causes two prob-

lems. First, the intermediary representations at different timesteps contain very
different amounts of information, from the fist timestep having seen only the first
symbol to the last timestep having to represent the entire sequence. Second, the
path length from the last timestep encoding the full sentence to the first input is
very long, resulting in information loss and slow learning.
Schuster and Paliwal (1997) present the bidirectional recurrent network, which

combines a forward network LSTM
!

 to read the sequence left-to-right, with a
backward network LSTM

 
 reading right-to-left.5 The outputs of the two networks

are concatenated to form the final output. E.g. at index i, the output is the
concatenation

hi = [LSTM
!

(s0:i);LSTM
 

(sI:i)]. (3.7)

If only the final states are used for encoding the whole sequence, the bidirectional
network gives a modest benefit through the alternative backward reading. The
bidirectional network is even more beneficial when the entire output is used as a
variable-length encoding, e.g. as input to an attention mechanism. In a bidirec-
tional network, each timestep of the output has access to information from the
entire sequence.

The attention mechanism was introduced by Graves (2013), and applied to
machine translation by Bahdanau et al. (2014). It is often useful to update a
neural state h based on a variable length context sequence V . The approaches
presented previously have addressed the problem by iteratively building up a
single vector that encodes the entire context. However, only a part of the context
sequence is relevant to the current computation, and the relevant part varies
between computations. The attention mechanism solves this problem by each
time selecting anew the relevant parts of the attended context values V , and
summarizing them into a single output vector. The selection is performed based
on a query vector q, and the key matrix K, which contains one entry for each of
the values V .
4See Section 3.5.2 for more.
5The backward direction is indicated by the reversed index sI:i in Eq 3.7
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An attention distribution is formed as a function f (q,K), normalized using the
softmax function. The summarized context is given by the weighted average of
the attended values V , where weights are given by the attention distribution

Attention(q,K,V )= softmax( f (q,K))V . (3.8)

In the simplest case, f is simply the dot product f (q,K)= qKT .
Models for NLP problems involving a mapping from one sequence to another

(seq2seq) typically employ encoder-decoder architectures. The encoder encodes
the input into an intermediate representation, from which the decoder generates
the output sequence.6 The predicted attention weights are sometimes treated
as a kind of soft word alignment between input and output. This is seen as
particularly useful for visualizing the operation of e.g. a translation system. The
explanatory power of attention weights has also met with criticism (Koehn and
Knowles, 2017; Moradi et al., 2019). As encoders have the ability to incorporate
information from other timesteps, and attention only needs to produce context
relevant for the prediction, there is no requirement that attention corresponds to
e.g. translational equivalents.
In the typical case of cross-attention, the attended context sequence is sep-

arate from the generated sequence for which the attention is used, e.g. when a
decoder attends to the output of an encoder. This is accomplished by setting the
query to the decoder state q = hi and K =V to the attended sequence.
In a deep architecture, it is also possible to use as context the sequence itself,

or more precisely its state in a previous layer. In self-attention (Vaswani et al.,
2017), the output of the previous layer is used as queries, keys, and values Q =
K = V . As the whole layer is evaluated in parallel, all queries are concatenated
into a single matrix

Q = [q1, . . . , qI ]. (3.9)
When self-attention is used in the encoder, access to future timesteps is not only

possible but beneficial. Decoding proceeds autoregressively from left to right, i.e.
the output of the previous timestep is fed back in as input to the next timestep.
Masking is applied during training to prevent the decoder self-attention from
trying to access future information.
A convolutional network applies different parameters depending on the local

order, while a recurrent network can use the recurrent state to count the distance
from the ends of the sentence, and to account for the local ordering of words.
The attention mechanism instead computes the attention distribution for each
timestep in isolation, and then summarizes the entire sequence by weighted aver-
age. There is nothing in the attention mechanism that would allow it to account
for word order. Positional encoding is applied to make word order information
available to the self-attention. A pattern of sine and cosine waves are added to
the input embeddings

PosEnc(t,2i)= sin
(

t
100002i/d

)
, PosEnc(t,2i+1)= cos

(
t

100002i/d

)
(3.10)

6More on encoder-decoder architectures in Section 5.2.3.
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where t is the timestep, i ∈ {0, . . . , (d−1)/2} defines the dimension, and d is the size
of the embeddings.
A single attention mechanism can only effectively attend to a single position in

the context sequence. While it is possible for the bulk of the attention distribution
to be spread out over multiple timesteps, combining the values at those timesteps
through elementwise averaging limits the effectiveness of such divided attention.
In practice the attention distributions tend to become peaked (Bahdanau et al.,
2014).

Multi-head attention enables attending to multiple timesteps simultaneously
by running multiple attention mechanisms in parallel. The queries, keys, and
values are projected separately for each attention head. The weighted averaging
is also separate for each attention head. The results of the heads are finally
concatenated together and projected to the desired dimensionality.

ai =Attention(qW q
i ,KWK

i ,VWV
i )

MultiHead(q,K,V )= [a1; . . . ;ah]WO (3.11)

To summarize, many approaches for modeling sequential data using neural
networks have been presented. The approaches make different trade-offs, and dif-
ferent architectures may be suited for different tasks. However, the self-attention
based Transformer architecture (Vaswani et al., 2017) has recently become very
popular, particularly for those NLP tasks in which data is abundant.

3.2.3 Discrete and continuous representations

In rule-based and statistical NLP methods, basic units are typically represented
using discrete, symbolic representations, meaning that there is a discrete sym-
bol identifying each item. Even if the symbols are discrete, they can have real
numbered statistics associated with them, e.g. probabilities based on counting
occurrences of a particular pattern in a corpus. Examples include word counts
and n-grams, i.e. counts of sequences of n particular words.
When symbols are encoded into a vector using one-hot coding, where each

dimension of the vector space corresponds to a single item, the result is a sparse
vector representation. To encode an item, only the corresponding dimension is
set to one, while all others remain zero. E.g. [0,0,1,0, . . . ,0] could represent the
word “an”, if it is the third word in the vocabulary. A bag of words can be
represented as a “many-hot” coding by combining the individual representations
using Boolean or.
Discrete representations can be called sparse in another sense, as they suffer

from sparsity of statistics, when each distinguishable item has its own inde-
pendent statistics. This means that the representation of a rare item cannot
benefit from statistics collected for similar or related items, leading to unreliable
representations. For words, if even one character differs, the word is counted as
distinct. Even though there might in fact be substantial similarity between the
items, no information is shared.
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If an item has never been encountered, it will have zero probability, unless a
smoothing method is applied to shift probability mass from frequent items to
rare and unseen items based on, e.g., lower order distributions. The unsmoothed
model is overconfident about its predictions, in particular of the impossibility of
unseen events. Smoothing can be guided by knowledge-based feature engineer-
ing, by generalization based on class labels or clustering. E.g. if a particular
pattern “I talked with” is commonly followed by a proper name, the probability
of all proper names could be increased even for names not observed with that
particular pattern. As a data-driven alternative, the standard smoothing method
for n-gram language models is modified Kneser-Ney smoothing (Kneser and Ney,
1995). Smoothing can only partly alleviate the problem of sparsity.
A more robust solution is found by exploiting the distributional hypothesis,

defining the meaning of an item through the contexts in which it occurs. The
item is represented as a vector in a dense high-dimensional space. Similarities be-
tween items can be computed as distances in this vector space. Directions in the
vector space correspond to compositional aspects of meaning, preferably in such
a way that adding a particular vector offset causes the same change in meaning
everywhere in the space. The meaningful directions span lower-dimensional man-
ifolds embedded in the high-dimensional space, on which the words are arranged.
This is perhaps most evident when physical continua, e.g. color, temperature,
and size, are discretized into words. The properties of meaningful directions
and offsets allows constructing new examples using vector arithmetic. While the
constructed vector does not exactly match any observed word, the nearest neigh-
bor(s) to the constructed point can be retrieved. Arithmetical vector semantics
is essential for natural language generation, as it enables constructing a vector
representation as a function of the context, and then predicting a vocabulary
item conditioned on the constructed vector.
End-to-end learning with continuous representations automates feature genera-

tion, eliminating the need for manual feature engineering which has been a central
task in ML engineering. The embeddings are trainable parameters. A central
idea in deep learning is the principle of multiple levels of composition. Deep ar-
chitectures are able to learn hierarchical representations, in which the first layers
of a network learn general low-level features (e.g. edges, corners), and deeper
layers compose those features into more specialized high-level patterns (e.g. eyes,
wheels), which in turn are composed to patterns of an even higher level (e.g. faces,
cars). This specialization is learned automatically, without the need for a human
to determine what each layer should be learning.
Discrete representations cause a bias towards short context windows and large

basic units, even at the cost vocabulary growth, as the state space grows expo-
nentially w.r.t. sequence length, but only linearly w.r.t. vocabulary size. Due to
Zipf’s law, large vocabularies cause more items to be rare and therefore poorly
modeled. Deep neural networks make powerful use of continuous representations,

48



Machine learning background

making them more robust towards sparsity.7 Continuous representations do not
suffer from the previously mentioned bias, but instead prefer small vocabularies
of frequent items.

3.3 Loss functions

Machine learning involves solving a model selection problem: from a set of al-
ternatives the machine learning practitioner needs to select a particularly good
alternative. In parametric learning the alternatives are values for the model pa-
rameters.
The loss function determines how good particular values for the parameters

are. The optimal parameters are a global minimum of the loss function. It is
also possible for the loss function to have local minima: points where the loss is
smaller than for any point within some neighborhood, but larger than the global
minimum. Local minima may be acceptable if they are close in value to the global
optimum. If not, a large search error occurs.
If the optimization problem admits a closed-form solution, the optimal param-

eters can be found in a single step. Often there is no known closed-form solution,
making it necessary to use an iterative learning procedure instead. The iterative
procedure can be based on heuristics or numerical optimization. This optimiza-
tion can be described as a search for the optimal parameters. During the search,
new candidate parameters are generated e.g. from the previous best parameters,
or from a model of the loss surface. The candidate parameters are evaluated
using the loss function.
If the loss function is convex, it has no local minima that are not the global

minimum, and the search is guaranteed to find the global optimum. If local
minima are present, it is possible for the search to get stuck in them.

3.3.1 Maximum Likelihood Estimation

A point estimate for the parameters is a finite dimensional vector θ ∈ Θ from
a parameter space Θ. The likelihood is the probability of the data given the
parameters P(D |θ). As the likelihood is used during training, the data is fixed
but the optimal parameters are not yet known. Thus the likelihood is a function
of the parameters.
Selecting the optimal parameters as a point estimate maximizing the likelihood

function is called maximum likelihood estimation

θ̂ML = argmax
θ

P(D |θ). (3.12)

Usually the full data likelihood is the product of likelihoods of independent and
identically distributed (iid) samples, in which case we optimize the logarithm of
7While continuous representations can be used in non-neural methods, it is less common.
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the likelihood for computational reasons. The logarithm turns the product into
a sum, and conserves numerical precision by avoiding very small numbers in the
results of the computations.

3.3.2 Maximum a Posteriori Estimation

We may have some prior knowledge of where we expect the optimal parameters to
be found. This prior knowledge can be expressed formally by giving a probability
distribution over the parameters. Bayes’ theorem describes how to update a
prior belief, represented as a probability distribution P(A) based on some new
observation B

P(A |B)= P(B |A)P(A)
P(B)

. (3.13)

The updated belief is called the posterior distribution. In maximum a posteriori
(MAP) estimation, the value maximizing the posterior distribution is selected as
a point estimate for the parameters

θ̂MAP = argmax
θ

P(θ |D)= argmax
θ

P(D |θ)P(θ)
P(D)

. (3.14)

Even though MAP estimation uses Bayes’ theorem, it differs from a full Bayesian
approach. The use of a point estimate results in discarding information about
the uncertainty of the estimate. A full Bayesian approach foregoes the use of
point estimates, using the full posterior distribution during the entire inference.
The use of a point estimate may be motivated by the need to limit computational
cost.

3.3.3 Minimum description length

The minimum description length (MDL) principle (Rissanen, 1978, 1989) is core
idea behind several approaches for constructing loss functions. It is based on the
observation that both learning and compression depend on exploiting regularities
in the data. In compression, the regularities are a means to an end, as the goal
is the maximally compressed data. In MDL-style machine learning, the model
expressing the regularities is the goal, and the compression is merely instrumental.
In ideal MDL, the code is in the form of a universal (e.g. Turing) machine

which when run yields the data. The length of the shortest such machine is
the algorithmic complexity of the data. Unfortunately this complexity is not
computable. Two-part MDL (Rissanen, 1978) is a practical variant. The goal
is to encode a particular data set D, assumed to be generated from a distribution
P(D). The encoding should require the minimum possible number of bits, while
still being losslessly decodable. The encoding is based on a hypothesis, here
represented by the parameters θ ∈Θ. The hypothesis space Θ and the conditional
probability distribution P(D |θ) are assumed to be known by both encoder and
decoder, but the selected point hypothesis θ is not. To communicate the point
hypothesis to the decoder, it must first be encoded using a description of length

50



Machine learning background

Figure 3.3. Schematic illustration of learn-
ing curves. Training loss keeps
decreasing, while validation loss
starts increasing when overfit-
ting begins.

Figure 3.4. Underfitting (1st degree polyno-
mial) and overfitting (5th de-
gree polynomial) in 1-d regres-
sion to noisy data generated
from a 2nd degree polynomial.

L(θ) to form the first part of the code. The second part is the description of
the data when given the point hypothesis L(D |θ). The best point hypothesis
minimizes the sum of the lengths of the two parts

L(D,θ)=L(θ)+L(D |θ). (3.15)

Shannon’s source coding theorem (Shannon, 1948) states that the optimal cod-
ing for L(D |θ) has length − log2(D |θ). While MDL leaves room for choice in how
the hypothesis is coded, if a complete code with length L(θ) = − log2(θ) is used,
two-part MDL becomes equivalent to the MAP-estimate with prior P(θ).

3.3.4 Regularization

The machine learning practitioner is faced with difficult questions: How do we
know that we are done training? Did we make good decisions when specifying
the capacity of the model? How much should we trust our data? A good model
should generalize robust patterns in the data, but not bend out of shape to fit
noise and outliers.
A simple way to measure generalization is comparing the curves of the loss

function on training and held-out validation data sets, as shown in Figure 3.3. In
the underfitting regime, both losses are higher than optimal. Perhaps training
is not yet complete, in which case the losses should be decreasing over time.
If underfitting occurs when converged, the model may be too rigid, and thus
unable to approximate the desired distribution well. In the opposite overfitting
regime, training loss becomes very small or even zero, but validation loss is high.
The model is too flexible, allowing it to overfit the training data, which hurts
generalization to unseen data points.
The capacity of the model can be controlled by adjusting the amount of pa-

rameters to achieve a good fit. Figure 3.4 demonstrates this using polynomial
regression. Another way is to use regularization, in which the loss function is
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modified in a way that encodes some prior knowledge of what a good fit looks
like. The form of the regularization depends on what the prior knowledge is.
The intuition that weights should not be too large leads to Lp regularization,

in which the Lp norm of the weight matrix is added to the loss. The L2 norm
is the Euclidean distance. The L1 norm, or Manhattan distance, also causes
sparse weights to be learned. Lp regularization is a special case of Tikhonov
regularization (Tikhonov, 1963), which can also express e.g. certain smoothness
constraints.
Another intuition is that the model should be robust to small perturbations

of the input or intermediary representations. The use of noise as regular-
ization is a successful technique used e.g. in Dropout (Srivastava et al., 2014)
and SwitchOut (Wang et al., 2018).8 In Dropout, some dimensions of a neural
encoding vector (an embedding, or a hidden state vector) are stochastically ze-
roed out during training. This encourages learning of robust, redundant features,
instead of relying on the presence of a single informative feature. Subword reg-
ularization, a noise based technique proposed by Kudo (2018), is discussed in
Section 5.5.11.
The model should not be overconfident in its predictions. This intuition leads

to label smoothing (Szegedy et al., 2016). In standard maximum likelihood
estimation of a categorical distribution with a gold label, the loss is the cross-
entropy with a Dirac δ function, i.e. the best prediction assigns all the probability
mass to the correct label. Smoothing the δ target distribution by distributing
some of the probability uniformly to all incorrect labels penalizes overconfidence.
The δ target distribution is particularly ill-suited for use with a softmax predictor,
as the softmax can only approach, but never achieve, the desired distribution.
This means that even if the distribution is already a good fit, each training
example will move the weights to even more extreme values, which will ultimately
lead to numeric overflow. In addition to preventing overfitting and improving
numerical stability, label smoothing also helps in retaining the flexibility of the
model to adapt to new data, which is difficult to do if the weights become extreme.
Even early stopping of training acts as regularization. When using an iterative

optimizer together with an overparameterized model, training progresses over
time from underfitting to overfitting, as seen in Figure 3.3. Stopping training at
the correct step thus prevents overfitting.
Also multi-task learning setups9 have a regularizing function by claiming

some of the capacity of the model. The model is prevented from overfitting to
small data for a low-resource task, as the shared parameters must also fit the
high-resource task(s) well.
8SwitchOut discussed in Section 5.5.11
9See Section 3.4.2 for multi-task learning.
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3.4 Learning setups

In machine learning, we may have access to various types of data with or without
annotations. Let us divide the training data D into features X and labels Y .
During testing or production use, the features will be the inputs to the system,
and the labels are the output.
Machine learning setups differ in the structure of X and Y , and in how the

training labels are available to the learning algorithm.

Supervised learning is the most common learning setup. In supervised learning,
the entire training data D is provided with labels Y . The abundance of labels
makes it straight-forward to train models discriminatively to predict the labels
given the features. Supervised training is limited to tasks in which enough labeled
data is available. When sufficient labels are expensive to collect, supervised
learning becomes infeasible.

Unsupervised learning describes a setup where no labels are provided. A model
for X is constructed, with Y as a latent variable. Generative models are partic-
ularly suited to unsupervised learning, when it is not known in advance what
patterns should be found in the data.
The term self-supervised learning has recently gained popularity (e.g. Lan

et al., 2019; Liu et al., 2019; Joshi et al., 2020). While there is no clear bound-
ary between unsupervised and self-supervised learning, the latter emphasizes the
use of richly informative but naturally occurring data. The unlabeled data is
partitioned into two disjoint subsets10, which are used as features and labels re-
spectively. In NLP, this can e.g. describe a masked language model loss, in which
the surrounding sentence context is used to predict a masked item.

Semi-supervised learning is an intermediate setting between unsupervised and
fully supervised learning, in which only a part of the training data is labeled

D = [(X (L),Y (L)); (X (U),;)]. (3.16)

When the proportion of labeled data is very small, the learning setup is some-
times called weakly supervised learning or minimally supervised learning.

3.4.1 Active learning

In normal semi-supervised learning, all available labels are provided immediately
at the start of training. In active learning (AL) the labels are made available
incrementally. A labeling oracle provides correct labels for individual examples.
The labeling budget determines how many times the oracle may be invoked.
Active learning can be particularly useful for collecting annotations. Data an-

notation is often performed for the specific goal of improving the performance of
a particular system on a task. This gives the opportunity to carefully select the
10A new partition can be made for each parameter update.
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data that will be annotated, in order to maximize the effect and minimize the
cost of collecting the annotations.
Active learning methods can be divided into three frameworks: pool-based

active learning, stream-based selective sampling and (membership) query synthe-
sis (Settles, 2010).
In pool-based active learning (Lewis and Gale, 1994), the system can select

samples to be labeled from an unordered pool of unlabeled data A . Samples can
be selected either one at a time (on-line) or in a larger batch, before updating
the information available to the learner. Pool-based active learning is applied in
Publication III.
In stream-based selective sampling, the learner can not select samples freely.

Instead the potential samples are shown one by one, and the learner has to decide
for each sample whether to elicit an annotation or not.
The third type of active learning is called query synthesis. In query synthesis,

there is no pool of candidates. Instead labels are elicited for samples drawn from
the generative model, which must be good enough to create realistic samples.
The pool-based active learning procedure is defined as follows: In each iteration,

a query strategy selects the next samples to elicit

X t+1 =Strategy(A ,D(U),D(L)
1:t ,Mt). (3.17)

The query strategy has access to four sources of information:
1. the training pool A ,
2. the set of unannotated data D(U),
3. the current set of annotated data D(L)

1:t ,
4. and the current best model Mt, trained with D(U) and D(L)

1:t .
The labeling oracle provides the true label(s) Y t+1 for the selected samples, which
are added to the labeled training data. A new iteration of the model is trained.
The selection strategy can make use of the knowledge learned by the current
iteration of the model.

Uncertainty sampling (Lewis and Gale, 1994) is the most prominent query
strategy. It uses the model’s estimate of the uncertainty of the prediction for
each sample as the selection score. The intuition is that the label for samples of
which the model is uncertain are likely to be more informative than samples of
which the model is certain. As a downside, noise and outliers are likely to have
uncertain predictions while being uninformative, which may affect the robustness
of the method.
While uncertainty sampling compares the probability of the selected label to

the sum probability of all other labels

X t+1 = argmax
X

(
1−P(Ŷ 1 |X )

)
, (3.18)

the related margin sampling only compares it to the runner up

X t+1 = argmin
X

(
P(Ŷ 1 |X )−P(Ŷ 2 |X )

)
. (3.19)
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Entropy-based uncertainty sampling uses the entire distribution over labels

X t+1 = argmax
X

(
−∑

i
P(Y i |X ) logP(Y i |X )

)
. (3.20)

Density-weighted methods apply density estimation in order to avoid selecting
outliers. Combined with uncertainty, they lead to selecting samples which are
informative in two ways: in addition to the model being uncertain, the sample
comes from a dense, representative region of the feature space. One density-based
method, representative sampling (Xu et al., 2003), selects samples which are
dissimilar to each other, in order to give a good coverage of the dataset. The
samples are clustered using k-medoids, and the cluster medoids are returned as
the selected samples. Selecting dissimilar samples is of particular importance
when selection and training is done in batches instead of on-line. An on-line
algorithm updates the uncertainty after each sample, making it less likely to
select redundant words than a batch algorithm.
For more about active learning, see Settles (2010) or Guyon et al. (2011).

3.4.2 Transfer and Multi-task learning

The availability of multiple related tasks opens up the possibility of transfer,
when knowledge gained while learning one task is transferred to another. The
tasks can either be trained sequentially, in parallel, or something in between. For
historical reasons, sequential transfer is sometimes called just transfer learn-
ing (Pratt et al., 1991), while parallel transfer is called multi-task learning
(MTL) (Caruana, 1998). Following Arivazhagan et al. (2019b) and Dabre et al.
(2020), I use transfer learning as a wider term subsuming both types of trans-
fer. For a survey on transfer learning for classification, regression, and clustering
problems, see Pan and Yang (2010).
In this training setup, the training data is the combination of N tasks[

(X (1),Y (1)), . . . , (X (N),Y (N))
]
. Typically one task is the primary task, and the

other tasks are supporting auxiliary tasks. In sequential transfer, the term par-
ent and child are used for the auxiliary and primary tasks, respectively. Transfer
can be particularly useful in situations where limited training data is available
for the primary task, but data for the auxiliary tasks is abundant.
Multilingual training can be seen as a multi-task setting in which each language

pair in the training data is a separate learning task (Luong et al., 2015a). In
this domain the setting can be called cross-lingual learning. Typically some
information is transferred from a high-resource to a low-resource language.
Cross-lingual learning differs from annotation projection in the type of the

end result. In annotation projection, the outcome of the procedure is a set of
annotations, e.g. for Part-of-Speech tagging or parsing. The annotations are
mapped from a high-resource to a low-resource language. In cross-lingual learning,
the outcome is instead a model capable of performing some task.
Torrey and Shavlik (2009) describe three ways in which transfer learning can

benefit training: 1) higher performance at the very beginning of learning, 2)
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steeper learning curve, and 3) higher asymptotic performance. The first two are
of importance when rapid training is essential, while the third is critical in the
common case where computational constraints are less pressing.
Learning multiple tasks can be seen as a form of regularization.11 There may

be non-robust features that are highly predictive in a small training set, but do
not generalize. The auxiliary tasks help in preventing the model from overfitting
to these incidental features for the primary task. The model must instead learn
representations that generalize well to the combination of tasks. A possible goal
is that the joint representations have a higher level of abstraction. Interlingual
representations are shared between multiple languages.
Not all transfer is beneficial. Negative transfer, also called interference, oc-

curs when the representations needed to solve different tasks are too different,
and the model capacity is insufficient to represent both. There is research into
the effects of negative transfer and the importance of the choice of auxiliary
tasks (Rosenstein et al., 2005; Bingel and Søgaard, 2017; Bjerva, 2017; Deleu and
Bengio, 2018).

Sequential transfer is a form of adaptation. In sequential transfer learning,
the pretraining on a high-resource parent task is used to initialize and constrain
the fine-tuning training on the low-resource child task. Zoph et al. (2016) apply
sequential transfer learning to low-resource neural machine translation. There are
various ways in which knowledge can extracted from the parent model. Typically
all or part of the parameters are transferred into the child model, e.g. by ini-
tializing embeddings of an NLP system using a model pretrained on a different
task.
In parallel transfer, tasks are trained simultaneously or their training is inter-

leaved. In simultaneous training, a single parameter update contains information
from multiple tasks. This is particularly useful when a single input is labeled
for several tasks, and part of the computation can be reused. It is also common
to build mixed minibatches consisting of examples from multiple tasks. If the
computations required for different tasks differ too much, it may be preferable to
interleave training by alternating between the tasks.
Sequential transfer carries the risk of catastrophic forgetting (McCloskey

and Cohen, 1989; Goodfellow et al., 2014), in which the knowledge gained from
the first task fades away completely. If it is known which parameters extract the
generic features, overfitting may be delayed by freezing those parameters between
the two training phases. This reduces the number of parameters trained from the
low-resource data. With parallel transfer, catastrophic forgetting does not occur.
In sequential transfer, the intended task can only start affecting the representa-

tions once pretraining is finished. Parallel transfer may see a benefit for learning
general representations, as it can learn from all tasks throughout training. How-
ever, parallel transfer requires the task mixture weights to be tuned, so that
learning progresses in the correct pace. Finding a good balance may be challeng-
11More on regularization in Section 3.3.4.
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Figure 3.5. Task mixing strategies for transfer learning.

ing when tasks have very different level of difficulty, or the amount of data for
different tasks is highly asymmetrical. Sequential transfer does not require the
same tuning, as convergence can be determined for each task separately.
Sequential transfer is preferable in situations where the final task is not known

at pretraining time, or the training data for it is not yet available. One example
is developing systems that can be rapidly adapted to a newly interesting low-
resource language for use during a crisis such as a natural catastrophe. In this
scenario there may not be time to start the costly parallel training procedure from
the beginning. One consequence of such sequential transfer is that preprocessing,
in particular the subword segmentation, cannot be optimized for the low-resource
language, as it is not known at pretraining time.
It is also possible to combine sequential and parallel transfer. Figure 3.5 shows

some possible ways of achieving this by mixing the tasks. One strategy, mixed
fine-tuning, begins with pretraining only on the high-resource task, and contin-
ues fine-tuning with a mixture of tasks. Chu et al. (2017) apply this strategy to
domain adaptation. The inverse setting, called mixed pretraining, is used by
Kocmi (2019). Pretraining is performed on a mixture of tasks, while fine-tuning
only uses the child task.
Kiperwasser and Ballesteros (2018) propose generalizing these strategies into

scheduled multi-task learning, in which training examples from different tasks
are selected according to a mixing distribution that changes during training ac-
cording to the task-mix schedule. They experiment with three schedules: con-
stant, exponential, and sigmoidal. In Publication IX, a new partwise constant
task-mix schedule suitable for an asymmetric-resource setting with multiple aux-
iliary tasks is proposed. The task-mix schedule can have an arbitrary number of
steps, any of which can be mixing multiple tasks. All the other strategies can be
recovered by using particular schedules with scheduled multi-task learning. Use
of a fine-grained scheduled multi-task learning requires the task mixing to occur
at training time, which precludes use of a preprocessing step for the oversampling
and task mixing.
Scheduled multi-task learning also enables a training scheme that could be

used in the rapid adaptation scenario: a multilingual parent model is pretrained
in advance on multiple high-resource tasks. When the need arises, the model can
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Figure 3.6. Methods for transfer, arranged by type of parameter sharing. Orange and blue
borders indicate sequential (S) and parallel transfer (P), respectively.

be sequentially transferred to a new low-resource task.
Transfer is essential in asymmetric-resource settings, in which the amount of

training examples for the target task very small, requiring the learner to rapidly
generalize. Humans are very adept at this, often being able to generalize correctly
even from only a single training example. Based on the number of training
examples for each new target task, the learning setups are also called few-shot,
one-shot and zero-shot learning. Note that background data is needed in
addition to the training examples for the target task. In these learning setups,
the background data is labeled for other tasks, while in the related setup of weakly
supervised learning, the background data is unlabeled. For a survey on few-shot
learning, see Wang et al. (2020).
The aim of meta-learning, also called learning-to-learn, is to generalize from

background training data in order to quickly adapt to new tasks. In a meta-
learning system there is typically some division into slow and fast learners with
distinct parameters. The slowly changing meta-learner learns to quickly adapt the
fast learner to new tasks. The term life-long learning (Thrun, 1995) describes
a scenario in which there is no separation between training and testing phases,
and the learner is expected to keep learning from new experiences indefinitely.
In knowledge distillation, a student model is trained to approximate the

output distribution of a teacher model. Typically the aim is model compression,
and the student is a smaller network trained on the same data. Chen et al. (2017)
apply knowledge distillation to machine translation by using as parent another
MT system trained to translate into the same target language from a different
pivot language.

Methods for transfer learning in NLP
Transfer is typically implemented through parameter sharing. In sequential
transfer, the parameters trained on the parent task are used to initialize those
of the child task, while in parallel transfer the dependency between parameters
is in the form of a constraint. It is possible to share all parameters, or select a
subset for sharing, allowing the remaining ones to be task-specific. For example
pretraining the entire model on a related task is full parameter sharing, while
pretraining only the embeddings or a subnetwork, e.g. the encoder, is partial pa-
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rameter sharing. As embedding or encoder pretraining is typically performed
on a generic contextual prediction task that differs from the target task, this is a
form of sequential transfer. Parameter sharing can be controlled on a fine-grained
level (Sachan and Neubig, 2018). Shared attention (Firat et al., 2016a) uses
language-specific encoders and decoders with a shared attention, while language-
specific attention (Blackwood et al., 2018) does the opposite by sharing only the
feedforward sublayers of the decoder, while using language-specific parameters
for the attention mechanisms. Model fusion combines the predictions of an
entire pretrained model for an auxiliary task, e.g. a language model, into the
predictions of the model being trained.
Parameter sharing can be either hard or soft (Ruder, 2017). In hard param-

eter sharing the exact same parameter matrix is used for several tasks. In
soft parameter sharing, also called parameter tying, each task has its own
parameter matrix, but a dependence is constructed between the corresponding
parameters for different tasks. It is e.g. possible to regularize the parameters to
be close by adding a norm penalty to the loss function. Hard parameter sharing
benefits from the shared parameters being exactly equal, which means that only
one copy needs to be stored in memory. This can result in a large reduction in
the memory footprint of the model. Lasserre et al. (2006) use soft parameter
sharing between the priors of a generative and discriminative model to enable a
principled way to interpolate between the two types of training.
The target language token (Johnson et al., 2017) and language embedding

(Conneau and Lample, 2019a) approaches use hard sharing of all parameters. In
the former, the model architecture is the same as in a language-pair-specific model.
The target language is indicated by a special target language token, prepended
to the input by a preprocessing step. E.g. adding 〈to_fi〉 indicates that the
target language is Finnish. The approach can be scaled to more languages by
increasing the capacity of the model, primarily by increasing the depth in layers
(Arivazhagan et al., 2019b). The language embedding can be described as a
factored representation, with the extra factor marking the language of each word
on the target side.
Model-agnostic meta-learning (MAML) (Finn et al., 2017) meta-learns a set of

initial parameters that only requires a small number of gradient steps to adapt
to a new task. Vinyals et al. (2016) apply meta-learning to language modeling,
Kaiser et al. (2017) to machine translation. Gu et al. (2018b) apply meta-learning
to find initializations that can very rapidly adapt to a new low-resource source
language.

Learning to share is a way to accomplish meta-learning using soft parameter
sharing. The contextual parameter generator (Platanios et al., 2018) consists
of two neural networks: the model and the parameter generator. The parameter
generator generates the weights of the model from some contextual variables. As
the model parameters are generated values and not trainable parameters, the gra-
dient of the loss must be backpropagated through both networks. The parameter
generator meta-learns a soft dependency between parameters for different tasks.
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Kang et al. (2011) identify task groups for parameter sharing using mixed integer
programming. Zaremoodi et al. (2018) use a trainable routing network to enable
adaptive sharing of subnetworks.
Figure 3.6 categorizes some methods for transfer learning based on the hard-

ness and extent of parameter sharing and whether the methods are sequential or
parallel.

3.5 Learning algorithms

The formal expression of a machine learning task often involves two optimization
operations. During training, the optimal parameters are found with a search
over the space of parameters

θ∗ = argmin
θ∈Θ

L(X ,Y ;θ). (3.21)

At test time, the output is decoded using a search over the hypothesis space

Ŷ = argmax
Y∈Y

P(Y |X ;θ∗). (3.22)

The search spaces, Θ and Y , from which the optimal value needs to be found,
are typically very large. It is not feasible to perform exhaustive search iterating
over all the possible values. Instead a search algorithm must be applied.
Depending on both the loss surface and the search, this can either result in a

global optimal value or some sort of approximation, e.g. a locally optimal value.
When choosing the search algorithm, one must consider both computational and
memory complexity, the difficulty of the loss function, the acceptableness of de-
viations from the true optimum, and whether there exists a good heuristic for
estimating the true cost of making a decision.
In local search, the search proceeds through iterative refinement of the current

best hypothesis. The neighborhood of the current hypothesis is explored by
taking small search steps, from which one is chosen as the next hypothesis. This
can be contrasted against global search, in which the next hypothesis is chosen
from anywhere in the search space, using a global estimate of the loss function.
In greedy search, the local search step with the lowest loss is always taken,

and any history of prior hypotheses is discarded. The aggressive pruning keeps
the number of considered successor states small, and thus the search quickly
progresses towards a goal state. As a downside, greedy search can get stuck in
“dead ends”, or paths that begin with low-loss steps, but continue with only high-
loss alternatives. Greedy search is unable to back out of the “dead end”, resulting
in reaching a suboptimal goal.
An optimal search is guaranteed to prune hypotheses only once they have

been proven suboptimal. When a “dead end” is encountered, the search can
backtrack to an earlier hypothesis and make a different choice. As a downside,
the data structure containing the information for backtracking can require large
amounts of memory.
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Beam search is a compromise between optimal and greedy search. Multiple
hypotheses are kept, while bounding the memory requirements. At each timestep,
all current hypotheses are expanded with their possible continuation steps. The
list of hypotheses is sorted in increasing order of the scoring function, usually the
loss. The hypotheses are then pruned, keeping only a fixed number (called the
beam width) of best hypotheses. Any hypotheses with scores worse than the
ones in the beam are pruned, meaning that the search can no longer backtrack
to them. As it is possible that the optimal path falls out of the beam, the search
is not optimal.
If an infinite beam width is used, the optimal best-first search is recovered.

Setting the beam width to one results in greedy search.
The heuristic is an estimate of the loss of completing a hypothesis. This loss

can be divided into two parts

L(Ŷ )=L(Y 0:t)+L(Y ∗
t+1:T ) (3.23)

where the first part is the known loss of the already predicted labels up to the
current timestep t, and the second part is the heuristic future loss of the optimal
labels from the next timestep t+1 to the end T. Beam search heuristic penalties
are typically not admissible heuristics, but rather try to penalize hypotheses that
seem at risk of becoming “dead ends”.

3.5.1 Expectation-Maximization

The Expectation Maximization (EM) algorithm (Dempster et al., 1977) is an
algorithm for finding ML estimates for parameters in graphical models with latent
variables, e.g. mixture models. The training data for such a model is only partly
observed, with the values for the latent variables missing. An iteration of the
EM-algorithm is guaranteed not to decrease the likelihood of the data, which
leads to guaranteed convergence (Dempster et al., 1977). However, convergence
may be slow, and the algorithm may converge to a poor local optimum if the loss
surface is difficult or the initial values are unfortunate.
The EM algorithm is an iterative algorithm alternating between two steps. The

aim is to maximize the complete data likelihood, including both the observed
D and the latent variables Y . As the value for Y is not observed, we must take
the expected value of the complete data likelihood under the current posterior of
the latent variables. This is called the E-step,

Q(θ,θi−1)=
∫

Y
logP(D,Y |θ)P(Y |D,θi−1)dY (3.24)

In the M-step, the parameters are updated to maximize the expected value
computed in the E-step:

θi = argmax
θ

Q(θ,θi−1). (3.25)

With the modification of adding the prior to the maximization in the M-step, EM
can also find MAP estimates (Bishop, 2006).
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A typical application of EM is clustering with a Gaussian Mixture Model
(GMM), which results in a soft assignment of data points to clusters. When
applied to a hidden Markov model, EM is called the forward-backward algorithm.
Using instead the related Viterbi algorithm (Viterbi, 1967) is sometimes referred
to as hard-EM. In the clustering task, an analogy can be drawn to using the
k-means algorithm, which yields a hard assignment of data points to clusters.
Spitkovsky et al. (2011) present lateen-EM, a hybrid variant in which EM and
Viterbi optimization are alternated. Alternating between soft and hard assign-
ments has the potential of avoiding local optima or areas of slow convergence.
When EM is used for clustering, the initial values are typically found using k-
means, which can be seen as analogous to a single lateen step.

3.5.2 Stochastic Gradient Descent

Gradient descent (Cauchy, 1847) is a learning algorithm based on local search.
The current parameters are improved by taking a small step in the direction in
which the loss decreases most rapidly: the direction of the negative gradient of
the loss function, evaluated at the current parameters

θt+1 = θt −ϵ∇L(D;θt). (3.26)

The length of the step is controlled by the learning rate ϵ.
To calculate the true gradient, a pass over the entire training set D is required.

If the training data is large, this results in unacceptably large computational cost.
Assuming that the loss decomposes to a sum of losses over the individual exam-

ples, a simple solution is to approximate the gradient using a small sample from
the data

θt+1 = θt −ϵ∇L(D t;θt); D t ⊂ D. (3.27)

This is called stochastic gradient descent (Widrow and Hoff, 1960).
Estimating the gradient from a single data point is also not optimal, as the

estimated gradient is very noisy, potentially slowing down convergence. In ad-
dition to this, modern GPU hardware is highly effective at performing multiple
similar computations in parallel. Computing the gradient from a single datapoint
is not much faster than using a small sample, known as a minibatch. Typical
minibatch sizes at the time of writing are approximately a few hundred data-
points, limited by the available memory on the GPU. To enable larger effective
minibatches, gradient accumulation can be applied. Gradients from multiple
consecutive minibatches are accumulated before applying a parameter update,
which is equivalent to using a larger minibatch size.
A global search can attempt to jump directly to the θ for which ∇L(D;θ) = 0

using higher-order statistics of the loss function. Such higher-order optimiza-
tion methods have large memory footprints, and are not reliable in the presence
of noisy loss function estimates. Noise may be caused both by the stochasticity
of SGD and explicitly added as regularization. Gradient descent is limited to
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optimization of continuous parameters. It can be generalized to local search in
discrete spaces, and is then called hill climbing.

Challenges in gradient-based learning
Gradient descent is sensitive to the learning rate ϵ hyper-parameter. Too large
values result in overshooting the optimal path, and even divergence. Too small
values cause slow convergence. To complicate the situation even more, the sen-
sitivity of different parameters can vary, causing them to have different optimal
learning rates. The Adam optimizer (Kingma and Ba, 2015) attempts to ad-
dress the problem by computing individual adaptive learning rates for different
parameters from estimates based on a running average of the first and second
moments of the gradients. Even though using Adam results in a form of overall
step size annealing, it is often combined with a learning rate schedule. A typical
choice is linear warmup followed by exponential decay.
The nonlinear functions used in deep learning, e.g. the sigmoid, tanh, recti-

fied linear unit (ReLU) (Nair and Hinton, 2010), and Gaussian error linear unit
(GELU) (Hendrycks and Gimpel, 2016), are approximately linear for a certain
range of inputs, while saturating to constant or nearly constant when inputs
move far from this range. In the linear region, the unit is sensitive to the in-
put. Linear functions have a useful property: their gradient is constant, making
gradient based optimization very stable. In the saturated region the function is
(nearly) constant, and the gradient is zero or very small. The input needs to be
changed by a large amount in order to cause a noticeable change in the output.
This means that it is (nearly) impossible for gradient descent to modify the be-
havior of the unit. Learning is most effective when units are initialized to start
in their linear region, and remain there during the early phases of learning.
In deep neural networks, there are multiple layers with linear weight matrices

and nonlinear activation functions between the input and output. The repeated
multiplication with a weight matrix makes it very unlikely that the variance of
the gradient is retained (Bengio et al., 1994). If the eigenvalues of the weights
are larger than 1, the gradient explodes to very large values. If the eigenvalues
of the weights are smaller than 1, the gradient vanishes to zero. Both prevent
effective learning at the earliest layers of the network. Parameter sharing, e.g.
of the type used in recurrent neural networks, can exacerbate this problem. In
these networks, the same weight matrix is repeatedly applied.
Cliff-like structures of high curvature, often found in the loss functions of deep

neural networks, cause large gradient values, which quickly push units out of
their linear regions (Pascanu et al., 2013). This can saturate the unit, causing its
future gradients to be small and learning slow.
The gradient is a measure of the first-order local rate of change of the loss

function. The estimate becomes less accurate when moving further away from
the current point. Therefore the gradient should not be used for taking long
steps.
One solution is to apply clipping to the gradient. The gradient can either be
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clipped in each dimension separately, essentially truncating the elements of the
gradient so that they lie within a predetermined range. Alternatively the norm
of the gradient can be clipped, scaling the gradient uniformly if its magnitude is
too large.
Another solution for gradient flow problems due to the depth of the network

is adding shortcuts to shorten the gradient backpropagation path. A residual
connection (He et al., 2016b) is a shortcut connection that simplifies the task
of the layer it is wrapped around. If the layer was originally tasked to learn
a function y = f (x) between vectors x, y ∈ Rd of the same length, the residual
connection replaces this with

y= g(x)+ x. (3.28)

The residual g(x) = f (x)− x is typically easier to learn than f . Particularly, if
it needs to be close to identity, the weights need only to be pushed towards
zero. The highway network (Srivastava et al., 2015) adds a gating mechanism to
control the strength of the shortcut. Also the attention mechanism can be used
to shorten the path of the gradient.

3.6 Combining multiple models

It is often desirable to combine multiple models for reduced variance and better
predictions. Optimally each model’s weakness is compensated by the strength
of another model. There are two main approaches to using multiple models in
concert.
The first is to use the models sequentially in a rescoring procedure. The first-

pass model produces a reduced search space, e.g. an n-best list of candidates.
One or more second-pass models score these candidates. The final choice is made
from the n-best list based on the combined score of all models. Rescoring is
particularly useful when the initial search space is very large, and some of the
models are heavy to decode from. The fast first-pass model prunes the search
space, while the heavy second-pass model refines the choice. As a downside, if
the first-pass model prunes out all good solutions so that they are not included
in the top n results, the second-pass model cannot recover them.
The second way uses an ensemble technique to decode from multiple models

simultaneously. In the case of a conditional language model, ensembleing typ-
ically interpolates the predictions of the models by averaging the distributions
predicted by the individual models into a combined distribution. The average can
be computed either of the probabilities (linear average) or their logits (log-linear
average). The next symbol is sampled from the combined distribution, and the
same symbol is fed into all the models in the ensemble.
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“Though many things are possible in morphology,
some are more possible than others.

(Aronoff and Fudeman, 1976)”

4. Subword segmentation

In order to train a machine learning model on sequential data, the data must be
decomposed into basic units or building blocks. For most parametric models, the
vocabulary (or lexicon) must be fixed at the beginning of training. For textual
data, typical units range from characters to words. Subword units have become
a popular choice in recent years.
In rule-based and statistical NLP systems, e.g. phrase-based machine trans-

lation, the standard approach is to use tokens separated using white space and
punctuation.1 For these systems, use of subword units has been restricted mainly
to morphologically rich languages. The use of subwords has been motivated
primarily by the very high out-of-vocabulary (OOV) rates of word-level mod-
els (Lee, 2004; Oflazer and El-Kahlout, 2007; Virpioja et al., 2007). Segmentation
into characters was proposed initially for translation between closely related lan-
guages (Tiedemann, 2009). However, the change of paradigm to neural methods
has changed also the practice in vocabulary construction: the standard approach
for neural methods is segmentation into subword units (Sennrich et al., 2015). In
neural methods, even character (Chung et al., 2016; Costa-jussà and Fonollosa,
2016) or byte (Costa-jussà et al., 2017) segmentation has found use outside of
closely related languages. One exception from this trend of small units is unsuper-
vised translation based on cross-lingual mapping of pretrained word embeddings
(Artetxe et al., 2018b; Yang et al., 2018).
The segmentation method is a preprocessing algorithm that divides text into

basic units. Several segmentation methods can be applied in sequence, e.g. first
applying a rule-based tokenizer to segment the sentence into words, followed by
a data-driven subword segmenter.
Much of the work on segmentation has focused on accurately approximating a

linguistically motivated segmentation. This focus can be motivated by both ease
of intrinsic evaluation, and the belief that theoretically motivated units should
perform well in practice. Recent work on unsupervised segmentation is less fo-
cused on linguistic fidelity, instead aiming to tune subword segmentations for
particular applications. In applications such as NMT, the correspondence of the
subwords to linguistic morphemes is not of high importance. The encoder is able
1Often called “words”. See Section 2.1 for discussion.
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to determine the meaning of the units in context. Therefore the subword seg-
mentation is typically tuned using other criteria, such as the size of the subword
vocabulary or the frequency distribution of the units.
Desirable properties for the vocabulary of basic units include high coverage,

tractable size, consistency, and ease of extraction. High coverage ensures that
all or at least most of the data is representable using the vocabulary. The un-
representable parts may be replaced with a special unknown token 〈unk〉. If
the proportion of unknown tokens increases, performance deteriorates. For mul-
tilingual models, coverage should be balanced between languages. Vocabulary
size affects requirements of both memory (via the number of parameters) and
computation (via the length of the sequences and size of sampling distributions).
Using large units, e.g. words, results in short sequences, but vocabularies may
become intractably large. When using small vocabularies, e.g. characters, mem-
ory requirements remain low, but long sequences slow down training, particularly
for recurrent networks. Consistency of segmentation benefits both intra-lingual
and cross-lingual generalization. Segmentation should reduce rather than increase
ambiguity, resulting in units that are relevant for the modeling task. Ease of
extraction includes the resource requirements (both in terms of computation
and data) for both training and applying of the segmentation method. In prac-
tical applications, a fast and easy method may be preferable even if accuracy is
slightly lower.
The granularity of the segmentation affects both coverage and size of the

lexicon: finer granularity typically means better coverage and smaller lexicon size.
However, within the reasonable limits set by the coverage and size, it is much
harder to determine the optimal level of granularity. In multilingual models, the
right level of granularity for cross-lingual transfer should be used.
This chapter begins with a look at different morphological processing tasks. The

focus then narrows on the task of morphological surface segmentation, addressing
both evaluation and existing methods for the task. The chapter concludes with
the contributions of this thesis to subword segmentation.

4.1 Morphological processing tasks

To produce a natural language sentence, it is necessary to map from an abstract
representation of the intended meaning into surface forms, in a way that not only
encodes the desired semantics but also achieves syntactic agreement. Morphologi-
cal generation is one of the last steps of this process. The inverse is required when
attempting to understand the communicated utterance. Morphological analysis
decodes from surface form to a more abstract representation.
Table 4.1 shows several related morphological tasks that can be described as

mapping from one sequence to another. As a formal task, morphological gener-
ation maps from lemma and tags representing the morphological properties of a
word to a surface form. Morphological analysis takes a surface form and yields
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Task Mapping Example

Generation wt 7! y; w, y ∈Σ∗, t ∈ τ∗ take past 7! took
Analysis w 7! yt; w, y ∈Σ∗, t ∈ τ∗ took 7! take past
Lemmatization w 7! y; w, y ∈Σ∗ better 7! good
Reinflection wt 7! y; w, y ∈Σ∗, t ∈ τ∗ taken past 7! took

Segmentation w 7! y; w ∈Σ∗, y ∈ (Σ∪ {++ })∗

Canonical deniability 7! deny++able++ ity
Surface deniability 7! deni++abil++ ity

Table 4.1. Morphological processing tasks. The word forms w and y use the alphabet Σ, while
the morphological tags t use the tag set τ.

an abstract representation in the form of the lemma and tags. In lemmatiza-
tion, the input is an inflected form and the output is the lemma. Lemmatization
is a subtask of analysis. The task of morphological reinflection (see e.g. Cot-
terell et al., 2016), is a more general variant of morphological generation. Instead
of the lemma, one or more inflected forms are given to identify the lexeme, to-
gether with the tags identifying the desired inflection. The task is to produce the
correctly inflected surface form of the lexeme.

Morphological surface segmentation is the task of splitting words into sur-
face morphs, substrings whose concatenation is the word w. Canonical morpho-
logical segmentation (Kann et al., 2016) instead yields a sequence of canonical
morphs. Canonical morphs are standardized segments, the results of undoing any
morphological processes modifying the morpheme. Different allomorphs, i.e. dif-
ferent surface morphs corresponding to the same meaning, are thus standardized
to the same representation. Canonical segmentation is a compromise between
segmentation and analysis, or alternatively a form of analysis in which the tag
symbols are chosen to correspond to the surface form of the canonical represen-
tative of a morpheme. In this example, the vowel change “y!i” is reverted in
“deny”, and “++abil++” is normalized to “++able++”.
Morphological surface segmentation can be learned effectively in an unsuper-

vised manner. As it does not require disambiguation, it is an easier task than
analysis or canonical segmentation, learnable from a smaller amount of data. An-
notations for semi-supervised learning are also simple and easy to gather, without
requiring deep linguistic knowledge from the annotator. These strengths make
morphological segmentation particularly well suited for low-resource languages.
All the discussed tasks operate on individual word forms in isolation. In case

of homonyms, methods either produce an exhaustive list of alternatives or only
a single alternative, aiming for the most frequent or useful one. In morpho-
logical disambiguation, the context in which the word form occurs is used to
disambiguate between the alternatives.
To summarize how the tasks relate to each other: In morphological surface seg-
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mentation, morph boundaries are inserted to segment a word into stems and con-
crete morphs, without normalization. This contrasts with morphological analysis
and canonical segmentation, which must resolve ambiguity caused by homonymy
and allomorphy. Learning to resolve such ambiguity is a more challenging task
to learn than surface segmentation. Surface segmentation may be preferred over
the other tasks e.g. when used in an application that needs to generate text in a
morphologically rich language, such as when it is the target language in machine
translation. If surface segments are generated, the final surface form is easily
recovered through concatenation.
From now on, the term morphological segmentation will refer to morpho-

logical surface segmentation.

4.2 Evaluation of segmentation

Intrinsic evaluation of segmentations produced by automatic systems against a
linguistic gold standard morphological segmentation can be based either on the
correct identification of morphs, or on the correct placement of morph bound-
aries. This may seem like a subtle distinction, but the approaches can give dif-
ferent results for partly correct segmentations. E.g. if “irreducibly” is segmented
“irreduc++ ibly” instead of “ir++reduc++ ib++ ly”, there are no correct morphs but
one correct boundary.

Oversegmentation occurs when excessive boundaries are introduced inside of
the minimal units, resulting in too small units that fail to capture the correct
meaning, for example segmenting “edge” as “ed++ge”. Undersegmentation is
the opposite: it occurs when desired boundaries are not found, resulting in found
units that are in fact compounds of multiple minimal units. For example seg-
menting “writings” as “writ++ ings” results in a unit that is a concatenation of
two suffixes, “ing” and “s”. In a more general sense, over- and undersegmenta-
tion can be defined in relation to a segmentation that is optimal for a particular
task, instead of using the linguistic morphemes as reference. For example, it can
be beneficial for information retrieval tasks to leave derivational suffixes unseg-
mented, preferring to segment the example above as “writing++s” It is possible
for a model to simultaneously over- and undersegment different boundaries, even
within a single word.
The primary evaluation measures for segmentations used in this work are bound-

ary precision, boundary recall, and boundary F1-score (Virpioja et al., 2011b).
The method combining the use of these three measures is referred to as bpr. The
boundary precision is the proportion of correctly generated boundaries with
respect to all generated boundaries, while boundary recall is the proportion of
correctly generated boundaries with respect to the reference boundaries,

Precision= C(correct)
C(proposed)

; Recall= C(correct)
C(reference) (4.1)

where C is the occurrence count. The boundary F1-score equals the harmonic
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mean of the boundary precision and recall

Fβ = (1+β2) · precision · recall
(β2 ·precision)+ recall . (4.2)

Precision and recall are calculated using macro-averages over the word types in
the test set. In the case that a word has more than one annotated segmentation,
the one that gives the highest score is taken. As none of the methods evaluated in
this work produce a list of alternative segmentations, this approach is motivated.
In the case where both the prediction and reference contain multiple entries, the
alternatives can be optimally matched using the Hungarian algorithm (Kuhn,
1955; Munkres, 1957), used e.g. by (Virpioja et al., 2011b).
For more closely analyzing the modeling of different aspects of morphology

within the framework of boundary evaluation, different boundaries can be tallied
separately. The simplest way to accomplish this was used for the first time in
Publication I. The test set is divided into subsets according to the patterns of
morphs in the reference segmentation: e.g. words without structure (stm), words
with a single stem and a single suffix (stm+suf), uninflected compound words
(stm+stm), and so on. Comparing bpr results for these subsets sheds light on
how well the method handles words of that type.
Another approach, first used in Publication II, is to compute statistics by classes

of boundary rather than classes of word. For undersegmentation, the missing
boundaries are categorized according to the pair of morph categories preceding
and succeeding the boundary. E.g. if “matchbox” is left unsegmented, it is
an undersegmentation error of type (stm, stm). For oversegmentation, the extra
boundary is categorized according to the category of the morph in which it occurs.
Other methods for intrinsic evaluation of morphological segmentation not used

in this work include methods based on an analysis of morph co-occurrence in word
pairs from prediction and reference (Kurimo et al., 2009; Spiegler and Monson,
2010; Virpioja et al., 2011b).
Intrinsic evaluations aim to directly compare the predictions against known ref-

erences. Extrinsic or indirect evaluations instead evaluate the segmentations
based on the down-stream performance when used in an NLP task such as ma-
chine translation (See Section 5.3.1), language modeling (Kurimo et al., 2017;
Devlin et al., 2019), information retrieval (Kurimo et al., 2010a; Turunen and
Kurimo, 2011), automatic speech recognition (Hirsimäki et al., 2006, 2009; Smit
et al., 2017), and spoken keyword search (Narasimhan et al., 2014; Singh et al.,
2019). Extrinsic evaluation is particularly useful when the optimal representation
for a particular application is not known. A downside is that the indirectness of
the evaluation diminishes the size of measured differences and introduces noise,
increasing the risk of inconclusive results.
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4.3 Subword segmentation methods

Finite-state transducers (FST), proposed for morphological analysis in the 1980s
(Koskenniemi, 1983), are a commonly used modeling framework for morphological
analyzers and generators. For example the Giellatekno project (Moshagen et al.,
2013) uses FSTs to model morphology of low-resource languages. In this work,
the Omorfi (Pirinen, 2015) FST-based analyzer for Finnish is used. Despite the
development tools and computational resources improving greatly in the previous
decades, the bottleneck for this rule-based approach is still the large amounts of
manual labor and skill that are required (Koskenniemi, 2008).
An alternative data-driven approach, unsupervised morphological segmentation,

dates back to the 50’s (Harris, 1955), and saw its most active research period
in the 2000s and early 2010s. A seminal work by de Marcken (1996) inspired
much of the work during this peak of activity. For surveys covering this period,
see Hammarström and Borin (2011) for unsupervised methods; Publication II
for semi-supervised methods. Zhu (2006) presents a survey on semi-supervised
learning in general. I will present a brief survey in the following section, with
focus on unsupervised and weakly supervised methods.
The primary distinction for categorizing data-driven segmentation is procedu-

ral vs model-based methods. Procedural methods typically define a heuristic
score, such as the letter successor variety (LSV) (Harris, 1955; Hafer and Weiss,
1974; Keshava and Pitler, 2006; Dasgupta and Ng, 2007; Demberg, 2007), and
an algorithm that directly applies it for segmentation. LSV is still popular as
a heuristic feature for other methods (Ruokolainen et al., 2014; Kurfalı et al.,
2017). A related approach involves using language model predictability as a
heuristic (Silfverberg and Hulden, 2018).
The alternative to procedural methods is to define a model of morphology,

and then fit it using data. Model-based methods can be categorized in many
ways, e.g. into generative vs discriminative models. Probabilistic generative
methods model the probability P(s) of generating a sequence of morphs (a word,
sentence, or corpus) s = [m0, . . . ,mI ], as opposed to discriminative methods
that model the conditional probability of the segmentation (boundaries) given
the unsegmented data. In unsupervised morphological segmentation, generative
models are much more common, but some unsupervised discriminative methods
have also been proposed (Poon et al., 2009; Narasimhan et al., 2015; Luo et al.,
2017).
Typically generative models perform subword lexicon learning, while dis-

criminative methods perform boundary prediction. Some notable exceptions
include the semi-supervised generative boundary prediction method of Spiegler
and Flach (2010), and the unsupervised discriminative lexicon learning meth-
ods of Poon et al. (2009) and Luo et al. (2017). In supervised learning, there are
also some discriminative methods emitting morphs rather than boundaries (Kudo
et al., 2004; Cotterell et al., 2015). Eger (2013) presents a fully supervised but
not discriminative method, based on exhaustive enumeration with a generative
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Markov model.
The minimum description length principle2 has been an inspiration for many

methods (Deligne and Bimbot, 1997; Goldsmith, 2001; Baroni et al., 2002) in
addition to the Morfessor family of methods (see Section 4.3.5).
Bayesian models are a very popular choice (Naradowsky and Goldwater, 2009;

Can and Manandhar, 2012; Lee et al., 2011; Kurfalı et al., 2017; Dreyer and Eis-
ner, 2011; Snyder and Barzilay, 2008). Typically these methods lack tractable
exact solutions, instead relying on Gibbs sampling Markov-chain Monte Carlo
for posterior inference. One Bayesian method, Adaptor Grammar, has achieved
strong results in unsupervised learning (Johnson, 2008; Sirts and Goldwater, 2013;
Eskander et al., 2016, 2019). Adaptor Grammars learn latent tree structures over
an input corpus. Formally the method can be described as a hierarchical Dirich-
let process that generates a distribution over distributions over trees. Adaptor
Grammars can be used to define morphological grammars of different complexity,
enabling the user a principled way to exploit linguistic knowledge.
Most data-driven methods model concatenative morphology, with a theoretical

basis in item-and-arrangement.3 Methods based on linking pairs of words with
a transformation turning one into the other (Kohonen et al., 2008; Virpioja and
Kohonen, 2009; Bernhard, 2009; Narasimhan et al., 2015) could be described as
following item-and-process. Neuvel and Fulop (2002) forgoes abstract morphemes
entirely in favor of processes. Lavallée and Langlais (2009) base their method on
formal analogies between pairs of words. Some methods instead aim to extract
paradigms (Snover et al., 2002; Monson et al., 2008; Dreyer and Eisner, 2011).
Methods vary in the limitations they place on the morphological structure. The

most limited methods only support a single boundary per word, dividing the stem
from the suffixes (Yarowsky and Wicentowski, 2000; Kazakov and Manandhar,
2001; Schone and Jurafsky, 2001; Snover et al., 2002; Monson et al., 2008; Narad-
owsky and Goldwater, 2009). Others allow slightly more flexibility with a single
stem but multiple affixes, most notably Linguistica (Goldsmith, 2001). For lan-
guages with extensive compounding and use of linking morphemes, even this
limitation is too strict.
The level of supervision varies from unsupervised, via semi-supervised, to fully

supervised. As a caveat it should be mentioned that few methods are truly un-
supervised, as typically at the very least some hyper-parameters are set using
development data or linguistic expertise. It is also possible to turn any unsuper-
vised method into a weakly supervised method by use of data selection. According
to Daumé III (2009), semi-supervised methods can be further divided into those
starting from an unsupervised method to which the ability to use a small amount
of labeled data is added (Poon et al., 2009; Sirts and Goldwater, 2013; Spiegler
and Flach, 2010) and those starting from a fully supervised method which is
extended to exploit additional unlabeled data (Ruokolainen et al., 2014; Kann
et al., 2018; Sorokin, 2019).
2See Section 3.3.3 for more information on MDL.
3See Section 2.3 for a presentation of morphological theories.
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Indirect sources of supervision can also be exploited, including seed knowledge
supplied by a human4 (Yarowsky and Wicentowski, 2000; Wicentowski, 2004;
Eskander et al., 2016), and parallel multilingual data (Snyder and Barzilay, 2008;
Mermer and Akın, 2010; Naradowsky and Toutanova, 2011; He et al., 2020, and
Publication VIII). Cross-lingual transfer can also be exploited in multilingual
models without parallel data (Kann et al., 2018; Eskander et al., 2019). There
is also a line of research into using semantico-syntactic information extracted
from unlabeled corpora using e.g. word embeddings (Schone and Jurafsky, 2001;
Narasimhan et al., 2015; Kurfalı et al., 2017; Sakakini et al., 2017; Luo et al.,
2017). Both this information and other distributional cues (Can and Manandhar,
2009, 2012; Lee et al., 2011) can e.g. be used for removal of spurious patterns or
for paradigmatic clustering.
Recent work on unsupervised segmentation has shifted away from aiming to-

wards a linguistic morpheme segmentation, instead aiming to find optimal sub-
word segmentations for particular applications. The paradigm shift to neural
networks has accelerated the process, as neural methods excel at exploiting the
full sentence context, while simultaneously benefiting from small vocabularies.
The most prominent of these methods is Byte Pair Encoding (Sennrich et al.,

2015, see Section 4.3.3). Other methods include WordPiece (Schuster and Naka-
jima, 2012; Wu et al., 2016), SentencePiece (Kudo and Richardson, 2018, see
Section 4.3.4), and Dynamic Programming Encoding (He et al., 2020). Along the
same lines of general sub-word segmentation without regard for morphology lies
the use of overlapping character n-gram features in e.g. representation learning
(Bojanowski et al., 2017).
Before introducing the contributions of this thesis to subword segmentation, we

shall take a closer look at some data-driven segmentation methods proposed for
machine translation, or used in this thesis.

4.3.1 Conditional random fields

Conditional random fields (CRF) are graphical models for discriminative struc-
tured classification.5 CRFs are suitable for sequential tagging and segmentation
(Lafferty et al., 2001).
For use in discriminative training, morphological surface segmentation can be

formulated as structured classification

w 7! y; w ∈Σk, y ∈Ωk,k ∈N; e.g. uses 7!BMES (4.3)

where Ω is the segmentation tag set. Different tag sets Ω can be used for segmen-
tation. The minimal sets (used e.g. by Green and DeNero, 2012) only include
two labels: Either the beginning (B) or end (E) of segments is distinguished from
non-boundary timesteps in the middle (M), resulting in the BM and ME mark-
4E.g. lists of affixes or roots in the language.
5See Section 3.2.1 for more on CRFs.
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ing schemes, respectively. A more fine-grained approach BMES6 (used e.g. by
Ruokolainen et al., 2014) uses four labels. In addition to marking both beginning
and end of segments, a special label is used for single-character (S) segments.
Note that there is no need to generate characters from the original alphabet,

instead a small tag set Ω is used. A predicted sequence of the tags corresponds
unambiguously to a segmentation. The fact that the sequence of boundary deci-
sions is of the same length k as the input has also been made explicit.

4.3.2 Unigram language models for subword segmentation

Several of the generative segmentation methods described in this section apply
a unigram language model to morphological segmentation. The central as-
sumption in the unigram language model is that the morphs in a word occur
independently of each other. In an n-gram language model, the history of length
n−1 is used as conditioning to predict the n:th token. By using unigrams, i.e.
setting n = 1, the length of the history becomes zero. Thus the unigram language
model is a zero-order (memoryless) Markov model. The probability of a sequence
of morphs decomposes into the product of the probabilities of the morphs of
which it consists

P(s |θ)=
N∏

i=1
P(mi |θ). (4.4)

Note that the Markov model emits morphs that can cover multiple characters.
For decoding from such a model given an unsegmented stream of characters, a
generalization of the Viterbi (1967) algorithm is needed. The generalized algo-
rithm corresponds to one decoding from a related but different model: a hidden
Markov model with the index of the previous morph boundary as the hidden
state7 and individual characters as observations.

4.3.3 Byte Pair Encoding

Byte Pair Encoding (BPE) was initially proposed as a data compression algo-
rithm (Gage, 1994). Gallé (2019) places BPE in a framework of macro-based
compression algorithms. Given a vocabulary size budget, it strives to minimize
the encoded length of a corpus by substituting frequently occurring byte pairs
with new symbols.
A variant of BPE was applied to neural machine translation (NMT) by Sennrich

et al. (2015), and has since then become a standard algorithm for subword seg-
mentation in neural methods for many NLP tasks. While the original algorithm
operated on pairs of bytes, as stated in the name of the method, the modern
application in NLP instead applies the method to character bigrams.
The algorithm constructs a substitution table, which maps bigrams to symbols.

6Also known as BIES, where I stands for internal.
7With the span between the previous boundary and current index defining a character
multigram.
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The table is initialized to include individual characters. Then the most frequent
pair of consecutive characters is identified, and added to the table. The procedure
is repeated until the desired table size is achieved (or no pair has frequency higher
than 1). The substitutions are recursive, meaning that a new symbol introduced
by a previous iteration can be used as an element in a new pair. The training
procedure is greedy, always adding the most frequent pair without planning ahead.
New data can be deterministically segmented by applying the found substitutions
in order.
BPE has properties that are desirable for neural NLP systems. The method has

only one hyper-parameter, which exactly determines the size of the subword vo-
cabulary. Fine-grained control of vocabulary size is important, as the vocabulary
size affects the size of the embedding layers, which contain a large proportion of
the model parameters, and also the computationally expensive softmax operation.
Another desirable property is a consequence of greedily joining by frequency,

which causes frequent words to be fully joined into single tokens, while rare char-
acter sequences remain highly segmented. As a result, the frequency distribution
is reshaped in a way that truncates the long tail of rare items. The result ap-
proximates using a shortlist of frequent words with subword segmentation for the
rare words not on the list.
BPE is a substitution dictionary method, not a probabilistic model. However,

the coding bears a similarity to unigram language models in that every subword
mi is encoded individually. From Shannon’s source coding theorem (Shannon,
1948) follows that any unigram model provides an implicit compression with
code lengths of − log2 P(mi) bits. In the opposite direction, the Kraft–McMillan
inequality (Kraft, 1949) proves that any uniquely decodable coding can be asso-
ciated with a probability distribution, although possibly a deficient one.
In multilingual settings such as translation, a joint BPE vocabulary is typically

trained on a concatenation of corpora of the different languages. This improves
consistency of segmentation, at a cost of some loss of compactness. If the data
is balanced over the languages, the frequent words will be constructed in the
early steps of the algorithm for all languages. Joint training is particularly useful
for tokens which can be copied from source to target. When such tokens are
segmented into the same subwords on both sides, the copying can proceed with a
one-to-one subword correspondence. If the segmentations differ, the model must
instead combine the subwords into a joint representation, and then generate a
different sequence of multiple subwords from that representation.
BPE has been extended in various ways. For example Wu and Zhao (2018)

extend BPE with additional features for determining the next merge operation
to add, and BPE-dropout (Provilkov et al., 2019) introduces stochasticity which
enables the use of BPE with subword regularization.8

8For subword regularization, see Section 5.5.11.

74



Subword segmentation

4.3.4 EM+Prune methods for segmentation

Even with the simplifying independence assumption of the unigram language
model, optimizing the model parameters and the vocabulary simultaneously is in-
tractable. Keeping the vocabulary fixed, the parameters of the unigram language
model can be optimized using the Expectation Maximization (EM) algorithm.9
In the E-step, expected observation counts for each of the subwords are computed.
In the M-step, the model parameters are updated based on the expected counts.
However, the EM algorithm only updates the expected frequencies for the sub-

words in the current vocabulary, and can neither expand nor contract the vo-
cabulary. Any subword with nonzero probability in the previous iteration will
continue to have nonzero probability after the EM update. Likewise, any subword
with zero probability will remain at zero.
To perform subword vocabulary learning, it is therefore necessary to introduce

a separate vocabulary pruning step. The vocabulary is initialized to a large seed
vocabulary, e.g. the set of frequent substrings. Interleaved with the EM iterations,
a pruning step ranks subwords by the estimated change in the loss function if the
subword were to be removed.
The methods applying EM+Prune vary in details such as how the loss function

is defined, the seed lexicon with which the algorithm is initialized, how the prun-
ing is performed, which variant of EM is used, and which stopping condition is
used.

Multigram segmentation
Deligne and Bimbot (1995, 1997) present an unsupervised EM+Prune method
that they apply initially to segmentation of sentences into phrases, and later
to segmentation of sentences into word-like units. The white space is removed
from the sentences before using them as input. While the intended application
is different from unsupervised subword segmentation, the method bears a close
resemblance to the subword segmentation methods described in this section.
The authors refer to the model as a multigram language model rather than a

unigram language model. This naming discrepancy stems from the two views of
the model described in Section 4.3.2: either as a Markov chain of morphs or a
hidden Markov model of multigrams.
The MAP loss function corresponds to a two-part MDL formulation.10 The seed

lexicon consists of substrings between 1 and 5 characters long, with a frequency
threshold applied. The lexicon is pruned using a heuristic removing of multigrams
having a very low prior probability. Parameter estimation uses standard EM, and
iterations alternating EM and pruning continue until the resulting segmentation
converges.
9See Section 3.5.1 for expectation maximization.
10See Section 3.3.3 for more information on MDL.
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Greedy Unigram Likelihood Segmentation
The subword segmentation method of Varjokallio et al. (2013) is particularly de-
signed for use in automatic speech recognition. It applies a multi-phase EM+Prune
procedure, with greedy pruning based on unigram likelihood. The seed lexicon
is constructed by enumerating all substrings from a list of common words, up
to a specified maximum length. Pruning is divided into two phases, which the
authors call initialization and pruning.
The first phase uses a character-level language model to compute the initial

probabilities of the subwords. The probabilities are refined by EM, followed by
hard-EM. During the hard-EM, frequency based pruning of subwords begins.
In the second phase, parameters are re-estimated using hard-EM. At the end of

each iteration, the least frequent subwords are selected as candidates for pruning.
For each candidate subword, the change in likelihood when removing the subword
is estimated by resegmenting all words in which the subword occurs. After each
pruned subword, the parameters of the model are updated. Pruning ends when
the goal lexicon size is reached or the change in likelihood no longer exceeds a
given threshold.
In short, this method is a maximum likelihood EM+Prune with a heuristic

iteration structure, and a heuristic stopping condition based on thresholding the
change in likelihood.

SentencePiece
Subword segmentation is potentially ambiguous, even given a particular subword
vocabulary. For example, if all individual characters are included in the subword
vocabulary, then it is always possible to segment a word fully into characters. If
“the” is included in the vocabulary, it can either be left unsegmented or segmented
“t++h++e”.
While most segmentation methods strive to limit the segmentation ambiguity,

SentencePiece (Kudo and Richardson, 2018; Kudo, 2018) attempts to harness it
for regularization. For more on subword regularization, see Section 5.5.11.
SentencePiece applies a unigram language model, in which a word consists of

a bag of subwords generated independently of each other. The parameters are
estimated using an EM+Prune procedure. As an approximation, it is assumed
that when a subword is removed, all its probability mass goes to the subwords in
its Viterbi segmentation. At each pruning iteration, a fixed proportion (typically
selected to be between 75% and 80%) of the vocabulary is kept, together with
all single character subwords. The iteration terminates when the goal vocabulary
size is reached.
Even though Kudo (2018) states that the parameters are set to maximize the

likelihood, in the reference implementation11 the maximum a posteriori (MAP)
estimate is used. The sparsity inducing prior, called Bayesian EM , is based on
11https://github.com/google/sentencepiece
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approximating a Dirichlet Process using a symmetric Dirichlet distribution prior

θ ∼DirichletK

( α
K

, . . . ,
α

K

)
, (4.5)

in which the concentration parameter α goes towards zero and the number of
categories K goes towards infinity. As a result, the posterior counts for the
events z ∈ Z are

θz = expΨ(C(z))
expΨ(

∑
z′∈Z C(z′))

, (4.6)

where Ψ is the digamma function (Liang and Klein, 2007).
Bostrom and Durrett (2020) find that subword segmentation based on the un-

igram LM (SentencePiece) is superior to BPE for Transformer based language
models.

4.3.5 Morfessor family

Morfessor is a widely used family of morphological segmentation methods, formu-
lated in a generative probabilistic framework with inspiration from the Minimum
Description Length (MDL) principle (Rissanen, 1978).12 While the Morfessor
family is language-independent, it has a particular design focus on agglutinative
languages with long sequences of morphemes. Unlike earlier MDL-based meth-
ods, e.g. Linguistica (Goldsmith, 2001), Morfessor does not restrict the number
of stems or affixes in a single word.
Since the original formulation of Morfessor by Creutz and Lagus (2002), the

family of methods has seen active development. The main branch of this develop-
ment and the most direct successor to the original formulation is called Morfessor
Baseline. Several variants extending various components of the method have also
been introduced. In addition to the Morfessor variants—both previous and novel
methods—described in this work, other important variants include Morfessor for
segmenting utterances into phrasal constructions (Lagus et al., 2009), and Al-
lomorfessor for modeling allomorphic variation in stems (Kohonen et al., 2008;
Virpioja and Kohonen, 2009)
In the following section, a unified formulation of Morfessor is given. It builds

on the overview given by Virpioja (2012). As Morfessor is a parametric machine
learning method, it consists of three components: model, loss function, and algo-
rithms for training and decoding.

Model. All Morfessor models are generative probabilistic models for segmenta-
tion of words, i.e. they define the joint probability P(w,s |θ) of words w and their
analyses s given the parameters θ. The structure of the analysis is as a list of
morpheme labels s = (m1, . . . ,mI ), following the item-and-arrangement approach
to morphology (see Section 2.3).
Morfessor assumes that the probabilities of words are conditionally independent

of each other given the parameters, meaning that no sentence-level or larger
12See Section 3.3.3 for more information on MDL.
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context is used to disambiguate segmentations. This independence assumption
allows factorizing the joint probability of the whole data set as a product of the
probabilities of individual words

P(D |θ)=
|D|∏
j=1

P(w j,s j |θ). (4.7)

The probability of an analysis for a given word is obtained using Bayes’ theorem

P(s |w,θ)= P(w |s,θ)P(s |θ)
P(w |θ)

(4.8)

P(s |w,θ)∝ P(w |s,θ)P(s |θ). (4.9)

Under the reasonable assumption that a certain analysis s yields only one word
form given particular parameters θ, the entire probability mass of the word given
the analysis is concentrated to a single word. To express this formally, the word
can be named by defining the detokenization function ϕ-1(s,θ), which for the
models described in this thesis is simply the concatenation of s. Using ϕ-1 and
the indicator function I

P(s |w,θ)∝ I(ϕ-1(s,θ)= w)P(s |θ). (4.10)

Thus the Morfessor model is characterized by the probability of the morph se-
quence P(s |θ) = P(m1, . . . ,mI |θ). Morfessor Baseline defines this probability us-
ing a unigram language model, while other variants make use of more complex
models.
The lexicon of used morphs is encoded in the model parameters. While the

parameters vary depending on the model, they can be divided into two groups:
the morph lexicon L and the grammar G. The parameters in the lexicon can be
further divided into those describing the form of the morph (e.g. the string rep-
resentation) and those describing the usage (e.g. the frequency). The grammar
(or morphotactic) parameters describe the valid ways of combining morphs to
form words.

Loss function. Morfessor training finds a point estimate for the parameters. In
most Morfessor methods, the optimal parameters are found using MAP-estimation
with an MDL-inspired loss function. The MAP estimate yields a two-part loss
function, consisting of the prior (the cost of encoding the lexicon) and the likeli-
hood (the cost of encoding the corpus, given the lexicon).
For most Morfessor methods, if a morph has a non-zero probability given the

parameters, it is implicitly considered to be stored in the morph lexicon. As
a consequence, the parameter configurations are typically sparse. The priors
placed on the model parameters are designed to favor lexicons with fewer, shorter
morphs.
The prior for the lexicon is of the form

P(L)=V ! P(V ) P
(
properties(mi, . . . ,mV )

)
, (4.11)
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where V is the size of the morph lexicon, and the properties are the form and
usage properties characterizing the morph. The factorial term accounts for the
V ! possible ways of ordering a set of V items. The lexicon is equivalent regardless
of the order in which the morphs are encoded. The prior for the lexicon size P(V )
is often omitted due to having a negligible effect.

Algorithms. Most Morfessor methods optimize their parameters using a local
search procedure. Local search is described in Section 3.5. The search is called
local, because only a subset of parameters are optimized in a single search step.
The parameters to be optimized depend on the neighborhood function. For
Morfessor, the neighborhood function is determined by the units that are reana-
lyzed in the search step, and the alternative segmentations that are considered.
The units can be whole words or substrings of words, and they are not limited
to the morphs in the current lexicon. Typically a single search step affects the
segmentation of more than one word: e.g. all words with a particular sequence of
morphs are simultaneously modified in analogous ways. Even though the change
may be beneficial to the score in some words and detrimental in others, each
search step is accepted or discarded as a whole.
The initialization and neighborhood function can be modified in various ways.

Frequency thresholding (Creutz et al., 2007) omits training words with a fre-
quency below the preset threshold, in order to remove noise such as spelling
errors. Originally the frequency thresholding was also proposed as a means of
controlling the growth of the lexicon, but this function has been superseded by
the weighting hyper-parameter α. Frequency dampening (Virpioja et al., 2011a)
controls the effect of word frequencies, by transforming them with a dampening
function during initialization. When using the constant function d(w) = 1, fre-
quency information is completely removed for type-based training. Type-based
training segments the affixes from frequent inflected forms as much as from less
frequent ones, typically giving good results when aiming towards a linguistic seg-
mentation. Using the identity function turns off frequency dampening, recovering
token-based training. Token-based training leaves frequent words unsegmented,
while oversegmenting rare words into small but frequent units. This evens out
the frequency distribution of the units, which is desirable when used in neural
NLP methods. Logarithmic dampening d(w) = ⌈

ln
(
1+C(w)

)⌉
is a compromise

between type and token-based training. Forced splitting (Virpioja et al., 2013)
introduces segmentation boundaries before and/or after certain characters, such
as hyphens, apostrophes, and colons. Special characters are generally difficult to
segment correctly, motivating this rule-based exception. Forced splitting is not a
complete solution to the problem, as special characters share the property with
short linking morphemes such as the “++o++” in neoclassical compounds such as
“extremophile”, which are not suited for forced splitting.

Learning setups. Morfessor was initially developed for unsupervised learning.
Kohonen et al. (2010) extend Morfessor to semi-supervised learning. Already
small amounts of annotated training data were found to substantially improve

79



Subword segmentation

the segmentation accuracy. For tuning the model, Kohonen et al. (2010) propose
weighting the likelihood with a hyper-parameter α:

θ̂ = argmin
θ

{− log

prior︷︸︸︷
P(θ) −α log

likelihood︷ ︸︸ ︷
P(D |θ) }. (4.12)

The approach is a simple but effective way of using an annotated development
set to improve performance. The two-part Morfessor loss strikes a balance be-
tween the size of the lexicon (the prior) and the size of the corpus when encoded
using the lexicon (the likelihood). These parts of the loss function have opposing
optima: the lexicon loss is minimized by a minimal lexicon consisting only of
the letters, while the likelihood is minimized by emitting as few large units as
possible, i.e. keeping words whole. Therefore, the α hyper-parameter controls
the overall granularity of the segmentation learned by the model. High values
increase the weight of each emitted morph in the corpus (less segmentation), and
low values give a relatively larger weight to a small lexicon (more segmentation).
Another way to use annotated data for semi-supervised training is by adding a

third component to the loss function, the cost of encoding the annotations using
the lexicon P(D(L) |θ), weighted by its own hyper-parameter β. The annotated
words are not optimized by the local search steps: the only way that the segmen-
tation of annotated words can change is if multiple alternative annotations are
given, in which case a choice between the alternatives is made between epochs.
To lower the cost of encoding the annotations, the morphs used in them must be
made more frequent. The effect of β is not as straightforward as that of α. It
simultaneously affects overall granularity to some extent, and the importance of
using the morphs present in the annotations.
To summarize, a member of the Morfessor family can be characterized by the

following 9 defining components:

• Model:

M1 the probability of an analysis,
M2 the detokenization function,
M3 the properties of morphs being stored in the lexicon,
M4 the parameters of the model grammar,

• Loss function:

L5 parameter estimation (ML or MAP),
L6 the priors for the model parameters,

• Algorithms:

A7 initialization,
A8 the training algorithm, and
A9 the decoding algorithm(s).
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Morfessor Baseline
M1 Morfessor Baseline (Creutz and Lagus, 2002, 2007; Virpioja et al., 2013)
applies the unigram language model (Equation 4.4). M2 The detokenization
function is concatenation, as in almost all Morfessors. M3 The lexicon is flat,
with the form properties encoding the string representation of the morphs, using
a character distribution estimated from the data. The usage properties encode
the distribution of morph frequencies. M4 In Morfessor Baseline, there are no
parameters in the grammar.

L5 Morfessor Baseline finds a point estimate for the model parameters θ̂

using Maximum a Posteriori (MAP) estimation. L6 The currently used priors
for the morph frequency and length were introduced by Hirsimäki et al. (2006).
The morph frequency prior is based on Rissanen’s universal prior for non-negative
integers. The implicit exponential morph length prior is achieved by the addition
of an end-of-morph symbol. A non-informative prior for the morph frequency
distribution is derived using combinatorics: the number of ways that the total
token count ν can be divided among the V lexicon items is:

P(τ1, . . . ,τV |V ,ν)= 1/

(
ν−1
V −1

)
. (4.13)

A7 Morfessor Baseline is initialized by setting the analyses to whole words.13

A8 The local search training algorithm is based on a recursive splitting
of morphs into two parts. The algorithm loops over words in the corpus in a
random order, and looks for an optimal segmentation into exactly two parts. If no
segmentation improves the loss function, the recursion terminates. If the string is
segmented, the algorithm descends recursively into the substrings. As Morfessor
Baseline uses a unigram language model, the optimal analysis of a substring is
not context dependent. The recursive splits are stored in an acyclic graph with
words as top nodes, morphs as leaf nodes, and intermediary recursion states as
internal nodes. This graph structure is used only during training to ensure that
the local search modifies in a consistent way all words with a particular sequence
of morphs, and can be discarded once training is complete. Iterations over the
words in the corpus are repeated until the search converges to a local optimum.
Note that in contrast to BPE, which proceeds bottom-up constructing subwords
starting from single characters, Morfessor Baseline starts from the whole word
and can thus be considered a top-down algorithm. The training algorithm of
the Morfessor Baseline method is described in more detail by Creutz and Lagus
(2005b) and Virpioja et al. (2013).
An alternative training algorithm has also been implemented. In Viterbi train-

ing, each word is individually resegmented to the most likely segmentation given
the current model parameters. This approach is also known as hard-EM. Viterbi
training is not able to perform analogous changes in multiple words in a single
search step. Also, no new subwords can be introduced during Viterbi training.
13Virpioja et al. (2013) experimented with random initialization, with inconclusive re-
sults.
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For these reasons, the algorithm is most suited for use as a fine-tuning algorithm
after training with the recursive search.

Morfessor CatML and CatMAP
The simplifying assumption of context independence which enables the unigram
language model in Morfessor Baseline does not actually hold for natural language.
E.g. a valid suffix can not necessarily be used as a prefix, but the unigram lan-
guage model is unable to assign it a different probability in the two cases. This
can lead to segmentation errors such as “*s++team”. In order to impose morpho-
tactic rules, a hidden Markov model with morph categories can be used for the
probability of a morph sequence. Morfessor Categories-ML (Creutz and Lagus,
2004) (CatML) and Categories-MAP (Creutz and Lagus, 2005a) (CatMAP) are
two Morfessor variants taking this approach. Each morph is assigned one of four
categories: prefix (pre), stem (stm), suffix (suf), or non-morpheme (non).

M1 A hidden Markov model is used for assigning probabilities to analyses,

P(s |θ)= P(c1 | )
|s|∏
i=1

[
P(mi | ci)P(ci+1 | ci)

]
P( | c|s|), (4.14)

where indicates both the word boundary symbol and its state. The inde-
pendence assumption made by this model is that there is no lexical dependence
between consecutive morphs, given the sequence of morph categories. As such it
cannot model all morphotactic constraints, e.g. the order in which affixes mark-
ing certain morphological categories should be used, or phonotactic constraints
such as which allomorph should be selected based on sounds in previously used
morphs. The HMM has morph categories as hidden states and morphs as ob-
servations. In addition to the four categories mentioned previously, a state for
the word boundary is also needed. The word boundary state can only emit the
boundary marker.

M3 CatMAP also introduces a hierarchical lexicon, intended to reduce the
undersegmentation of words with frequently occurring morph sequences. In a
hierarchical lexicon, morphs already present in the lexicon can be reused when
encoding new morphs. The form properties of a morph depend on whether it is
a new, spelled out morph, or a structured morph built from existing submorphs,

P
(
form(mi)

)=
(
1−P(substruct.)

)∏|mi |
j=1 P(σi j) Spelling out

P(substruct.)P(ci1 |mi)P(mi1 | ci1)P(ci2 | ci1)P(mi1 | ci1) Substructure
(4.15)

The usage properties must contain information that allows the estimation of the
probability distributions assigning categories to morphs. In the HMM, this is de-
fined by the emission probabilities P(m | c). For estimation, it is more convenient
to define P(c |m) and reverse the conditioning using Bayes’ theorem.

P(m | c)= P(c |m)P(m)
P(c)

(4.16)
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The conditional category distribution is based on two intuitions: stems are as-
sumed to be generally longer than affixes, while affixes are assumed to co-occur
with many different stems. Thus the morph is more likely to be an affix if it has a
neighbor that is difficult to predict. For suffixes the relevant neighbor is the pre-
decessor, while for prefixes it is the successor. The unpredictability is measured
using perplexity in the current segmentation of the training data. Thus three
usage properties per morph are required: frequency, left perplexity, and right
perplexity. The length in characters does not need to be encoded separately as it
is already computable from the encoded string representation. A probability dis-
tribution is computed from the length and perplexities via sigmoidal thresholding,
assigning of probability to the non-morpheme class, and normalization.

M4 The model grammar consists of a fixed number of parameters depending
only on the number of categories. These parameters characterize the transition
probabilities of the HMM. They are estimated using maximum likelihood with
restrictions forcing some transitions to have zero probability: a suffix may not
directly follow the initial word boundary or a prefix, and a prefix may not be
directly followed by a word boundary.

L5 As CatML is a maximum likelihood method, it lacks the inherent balance
between lexicon and corpus losses. To avoid the lexicon size growing uncon-
trollably, it requires heuristic restrictions. These restrictions are implemented
as constraints on the local search. CatMAP on the other hand uses maximum
a posteriori estimation of the model parameters. L6 However, the morph
occurrences present in the hierarchical lexicon prevent a clearcut MDL-based fac-
torization of the cost function into two parts relating to the lexicon and corpus
respectively. While the parameters have clearly defined priors, the use of P(m | c)
during the encoding of the lexicon causes the contributions of lexicon and corpus
during estimation to be mixed. The lack of this factorization prevents the use of
the α-weighting scheme for semi-supervised training proposed by Kohonen et al.
(2010).

A7 CatML and CatMAP are initialized from a Morfessor Baseline segmenta-
tion. As the segmentation is initially not tagged by morph categories, the emis-
sion and transition probabilities are first estimated using Viterbi-search (a.k.a.
hard-EM) without changing the segmentation. A8 CatML applies only two
steps which are not repeated: splitting into already existing morphs to remove
redundant morphs, and removal of non-morphemes by joining with their neigh-
boring morphs. CatMAP uses a local search with three alternating search steps—
split, join, and resegment—repeated for a fixed number of iterations. In the
split operation, all occurrences of a particular morph are reanalyzed by trying
all allowed two-morph substructures. In the join operation, pairs of consequent
morphs are considered for joining. As all occurrences of the new morph are tagged
the same way, the pair is only considered for joining if the surrounding context
is consistent with the new category. In the resegmentation operation, each
word form is completely reanalyzed using Viterbi search. At the end of training,
the non-morphemes are removed by collapsing any structured morph containing
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submorphs tagged as non-morphemes. A9 For decoding, the Viterbi search
is adjusted to account for the categories, by expanding the state space to be
the Cartesian product of previous morphs and previous categories. This also in-
creases the time complexity from O(|w|2) in the case of a unigram language model
to O(|w|2K2) for an HMM model with K categories.

4.4 Contributions to subword segmentation

In the following section, the contributions of this thesis to the field of subword
segmentation are presented. Methods are ordered by the Publications in which
they are presented, rather than chronologically. The focus lies on describing the
range of ideas that were explored. Only intrinsic evaluations are discussed here;
for machine translation evaluations, see Section 5.5.

4.4.1 Morfessor FlatCat

Morfessor FlatCat14 is presented in Publication I and applied in Publications II,
III, IV, VII, and X. The HMM morphotactics of Morfessor FlatCat are based on
Morfessor CatMAP (Creutz and Lagus, 2005a), but the use of a flat morph lexicon
enables using the semi-supervised training approach proposed by Kohonen et al.
(2010). Morfessor FlatCat is designed for and excels at semi-supervised training,
but the lack of hierarchy in the lexicon is a detriment in fully unsupervised
training.

M1 The probability of an analysis is given by Equation 4.14, the same HMM
morphotactics previously used in CatML and CatMAP. The benefit of the HMM
morphotactics is increased sensitivity to the context in which the morph occurs,
which improves the precision of the segmentation by suppressing spurious segmen-
tation. For more discussion on the benefits of the HMM, see Section 4.3.5. M3

Morfessor FlatCat uses a flat lexicon, in contrast to the hierarchical lexicon in
CatMAP. A hierarchical lexicon allows building new morphs out of other morphs
already in the lexicon, while in a flat lexicon each morph is represented directly
as a string of letters.

P
(
form(mi)

)= |mi |∏
j=1

P(σi j) Spelling out (4.17)

Longer morphs are more expensive to add to the lexicon, as each letter must be
encoded separately. Not considering the effect of loss function weighting, the lack
of hierarchy leads to a tendency to segment slightly more, evidenced by higher
recall but lower precision of boundaries, as seen in Tables 4.3 (English) and 4.4
(Finnish), but not 4.5 (Turkish). The benefit of the flat lexicon comes from the
factorization of the loss function. In a hierarchical lexicon, morphs are emitted
14Software available at https://github.com/aalto-speech/flatcat.
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both in the lexicon and the corpus. When using a flat lexicon, all morph oc-
currences are in the encoded corpus. This enables the factorization required for
the weighting of the loss function components seen in Equation 4.12. The loss
function weighting allows tuning to compensate for the general tendency of un-
supervised methods to undersegment. Direct control of the overall segmentation
granularity is also useful for applications: in Publication VII, this tuning ability
was used to increase segmentation consistency for statistical machine translation.

M4 L6 The usage properties of morphs, and the parameters of the model
grammar are the same as in Morfessor CatMAP. The way in which the condi-
tional category distributions P(c |m) are computed from the length and neighbor
perplexities of morphs also follows CatMAP.

L5 Morfessor FlatCat is trained using α-weighted MAP-estimation, with
the possibility of semi-supervised training. The neighbor perplexities are model
parameters that are heavy to compute exactly during the local search. To speed
up learning, the perplexities are estimated from the current analysis only between
iterations. As new morphs are introduced during the search operations, their
perplexities need to be estimated. When a new morph is introduced by joining
two existing morphs, it can inherit left and right perplexity from the first and
second submorph, respectively. To improve the estimate, the number of contexts
can be thresholded to at most the number of occurrences for the new morph.
When a morph is split into two submorphs, the first and second submorph can
inherit from the old morph the left and right perplexity, respectively. The other
two perplexities are set to 1, making the assumption that the new morphs do not
occur in any other contexts. At the end of the epoch, the perplexities estimated
in this way are replaced with estimates based on counts from the current analysis.

A7 Training is initialized from a Morfessor Baseline segmentation in the same
manner as Morfessor CatMAP. A8 The training algorithm is a local search with
alternating search steps. In contrast to CatMAP, which uses a hard-coded itera-
tion structure, FlatCat offers fine-grained control of the iteration structure. Train-
ing proceeds until convergence rather than a predetermined number of epochs.
The order of search operations can be freely selected, and operations can be easily
added or removed.
A new search operation called shift is introduced. shift operates on a pair

of consequent morphs, attempting to replace them with another pair in which
the boundary has been shifted forward or back within a defined window. E.g. if
the current segmentation is “imp++atient”, the shift operation allows replacing
it with “im++patient” in a single search step. Even though limits are placed
on the neighborhood function15 to avoid generating undesirable changes, using
the shift operation is not always beneficial. Segmentation quality deteriorating
when the search is made more flexible could be an indication of model error.
In Morfessor CatMAP, the morph(s) resulting from a search step receive the

same tags in all instances. The selected categories may not be permitted in all
15The boundary can be moved at most 2 letters, and the resulting morphemes must be
at least 2 letters long.
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contexts, e.g. “e” and “d” can be joined into “ed/suf” in “us/stm++e/non++
d/non” but not in “e/non++d/non++ ict/suf” as the latter would lead to the
forbidden category sequence of a word starting with a suffix. In CatMAP the
solution is to limit the scope of the search step by adding context sensitivity:
e.g. units in the beginning of words are treated separately from units at the
end. In constrast during Morfessor FlatCat search, each word is individually
retagged, ensuring that category sequences are both permissible and optimal.
The context sensitivity in the neighborhood function was kept, although it is
no longer necessary to avoid illegal category sequences. The operators are not
fully symmetrical, because the unit sizes of the targets vary: splitting targets a
single morph, joining and shifting targets a context-sensitive morph bigram, and
resegmenting targets a word form. As postprocessing at the end of training, the
non-morphemes are removed by joining with their neighboring morphs. A9 The
generalized Viterbi decoding algorithm is identical with the one used in CatMAP.

4.4.2 Morfessor EM+Prune

The greedy local search of Morfessor Baseline is sensitive to initialization, and
may converge to suboptimal solutions, particularly in the case of unsupervised
learning of small subword lexicons for use in neural NLP. In Publication V, Mor-
fessor EM+Prune16 replaces the search algorithm of Morfessor Baseline with
an improved algorithm based on Expectation Maximization and pruning a seed
lexicon of frequent substrings. The training algorithm draws inspiration from
SentencePiece (see Section 4.3.4). Morfessor EM+Prune is aimed for the unsu-
pervised setting, tuning for small vocabularies. As it retains the uncertainty of
segmentations by estimating expected occurrence counts rather than defining a
single current segmentation for each word, the method is particularly well suited
for the sampling of alternative segmentations required by subword regularization.
Many defining characteristics are retained from Morfessor Baseline. M1 The

probability of an analysis is given by the unigram language model, M2 the
detokenization function is concatenation, and M4 there are no parameters in
the model grammar. M3 The properties of morphs are similar to Morfessor
Baseline. In Morfessor EM+Prune, morphs are explicitly stored in the lexicon,
and morphs are removed from the lexicon only during pruning. This differs from
Morfessor Baseline, in which a morph is implicitly considered to be stored in the
lexicon if it has non-zero count. The usage properties are real-valued expected
counts, rather than natural numbers counted from the current analysis.

L5 The parameters are estimated using MAP combined with an implicit
Dirichlet Process prior called Bayesian EM (Liang and Klein, 2007). L6 The
priors placed on the lexicon of the Morfessor model must be slightly modified for
use with the EM algorithm. The standard Morfessor Baseline prior is used during
the pruning phase. During the EM parameter estimation, the prior for the morph
form properties is omitted. It has no effect on the parameter estimation, as the
16Software available at https://github.com/Waino/morfessor-emprune.
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morph lexicon remains constant. The switch from counts to real-valued expected
counts poses a problem for the frequency distribution prior. Recall17 that the
Morfessor Baseline frequency distribution prior is derived using combinatorics
from the number of possible assignments of the total count to morphs in the
lexicon. When using real-valued expected counts, there are infinite assignments
of counts to parameters, making the prior not theoretically motivated. Despite
this, the prior is retained with the minimal modification of rounding the numbers
to the nearest integer, in order to use EM+Prune as an improved search to the
original loss function.

A7 The seed lexicon for initializing Morfessor EM+Prune consists of the
N most frequent substrings, with optional prepruning of redundant subwords.
Forced splits before or after certain characters (e.g. hyphens, apostrophes, and
colons) may also be enforced by prepruning the seed lexicon. As Morfessor
EM+Prune cannot introduce new subwords during training, pruning out morphs
spanning over a mandatory split point is enough to ensure that the restriction is
enforced. A8 Morfessor EM+Prune implements a new training algorithm based
on alternating parameter estimation using the EM algorithm and lexicon pruning.
The EM phase of each training iteration consists of three EM sub-iterations. The
model parameters are replaced with updated expected occurrence counts, given
the previous best parameters. In the following pruning phase, the subwords in the
current lexicon are sorted in ascending order according to the estimated change in
the loss if the subword is removed. Multi-character subwords are removed until
either of the pruning stopping criteria are met: either the estimated loss starts
rising, or the pruning quota for the iteration is reached. A9 For finding the
optimal segmentation of new data, or an n-best list of alternatives together with
their probabilities, the generalized Viterbi search of Morfessor Baseline is appli-
cable. For use in subword regularization (Kudo, 2018), alternative segmentations
must be sampled. Sampling from the full data distribution is implemented using
the forward-filtering backward-sampling algorithm (Scott, 2002). A faster alter-
native is to approximate the distribution by the n-best list, which can be cached
for reuse.
SentencePiece can only be trained to produce a subword lexicon of predeter-

mined size. In contrast, Morfessor controls the final lexicon size using the tuning
hyper-parameter α (Equation 4.12). To reach a subword lexicon of a predeter-
mined size while using the Morfessor prior, Morfessor EM+Prune implements a
novel automatic tuning procedure. When ranking the subwords for the pruning
step, the estimated change in prior and likelihood are computed separately for
each subword. For the majority of subwords, the estimated changes have oppos-
ing signs: removal of the subword decreases lexicon cost while increasing corpus
cost. Subwords whose removal reduces both loss components are always removed
regardless of α, while if both components are positive, the subword will not be
removed. For other subwords, it is possible to determine the exact value of α

17From Section 4.3.5 L6
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hyöty
[utility]

C ajo
[drive]

C neuvo
[counsel]

M j
[+Pl]

M en
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teknise
[technical]

M t
[+Pl]

tien
[road]

C varsi
[side]

C tarkastukse
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M t
[+Pl]
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hyötyajoneuvojen
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[roadside inspections]

technical roadside inspection of commercial vehicles

Omorfi 11

Words 3

Restricted
Omorfi

Morfessor
5

Source 6

System #Tokens Segmented sentence

Figure 4.1. Worked example of the Omorfi-restricted Morfessor (ORM) segmentation.

that would balance the changes in the loss components, causing pruning to stop
at that point. Arranging the values of α makes it possible to compute the value
that gives exactly the desired size of lexicon after convergence of the pruning. As
retraining the parameters may cause the estimated threshold α to change, the
automatic tuning is repeated before each pruning phase.
Publication V shows that the Morfessor EM+Prune algorithm reduces search

error during training, resulting in models with lower Morfessor loss. When seg-
mentation output is compared to linguistic morphological segmentation, the lower
losses result in improved accuracy.

4.4.3 Hybridizing rule-based and data-driven segmentation

A linguistically accurate morphological segmentation does not have an optimal
granularity for machine translation.18 For SMT, accurately segmenting chains
of affixes is often oversegmentation, while for NMT, keeping rare stems whole
is undersegmentation. Data-driven segmentation is able to exploit frequency in-
formation to alleviate both of these problems. However, linguistic segmentation
contains valuable information from the perspective of language-internal segmen-
tation consistency.
Restricted Morfessor, presented in Publication VI, aims to hybridize the ad-

vantages of rule-based segmentation reaching high linguistic fidelity, and tunable
data-driven segmentation. The segmentation is tuned from parallel data, aiming
for a similar granularity on both sides of the language pair. While restricted
Morfessor could be used in combination with any other segmentation method, in
the experiments the segmentation tool from Omorfi (Pirinen, 2015) for Finnish
was used. This combination is called Omorfi-restricted Morfessor (ORM).

M1 Restricted Morfessor follows the Morfessor Baseline method, but addi-
tionally restricts the possible set of segmentation boundaries to those between
linguistic morphs. That is, the segmentation method may decide to join any of
the linguistic morphs, but it cannot add new segmentation boundaries to known
linguistic morphs. Analyses violating the restrictions have zero probability. In
18See Section 5.3.1 for discussion.

88



Subword segmentation

practice the restrictions are enforced by pruning the search space. A7 Training
is initialized with unsegmented words augmented with the information of allowed
potential segmentation locations. Instead of this top-down approach, it would be
possible to proceed bottom-up by starting with words maximally segmented and
allowing Morfessor to recombine the morphs into larger units. A drawback of the
bottom-up approach is that it is not obvious how the training-time data structure
of Morfessor Baseline should be optimally initialized. E.g. a right-branching tree
could be used, but such an initialization may result in convergence to a poor lo-
cal optimum in the presence of restrictions. A8 Recall19 that the training-time
data structure of Morfessor Baseline contains intermediary nodes representing
substrings shared by several word forms. It is possible for two or more word
forms to have different restrictions on the same substring, causing some of the
restrictions to be violated during training with the recursive algorithm. Full en-
forcement of restrictions can be ensured by applying the recursive algorithm only
for the two first epochs, and then switching to Viterbi training. As Viterbi train-
ing resegments each word individually, restrictions apply with the correct scope.
In practice the effect is small, as in the experiments only a very small proportion
of restrictions were violated during recursive training.

4.4.4 Cognate Morfessor

Publication VIII addresses target–target consistency in the asymmetric-resource
multilingual translation task.20 The method focuses on improving the consistency
of morphological segmentation for cognate pairs,21 to enable the use of cross-
lingual transfer to improve the learned subword representations. If segmentation
decisions are consistent between the high- and low-resource target languages, the
units in the low-resource language can better benefit from the contexts of their
correspondents in the high-resource language.
Cognate Morfessor22 is a multilingual variant of the Morfessor method. It uses

automatically extracted cognates paired between the two languages, and fuzzy
matching to link cognate morphs. It builds on reuse of components from the
Morfessor Baseline model, with modifications to the training algorithm enforcing
the cross-lingual restrictions.
The data is arranged into pairs of words, one from each target language. The

analysis is thus a pair of morph sequences (s, t) = (
(s1, . . . , sI ), (t1, . . . , tJ)

)
. M2

The detokenization function also returns a pair of words, concatenating both
19From Section 4.3.5 A8
20Consistency types were introduced in Section 1.1. For more on the asymmetric-resource
setting, see Section 5.3.2.
21For a discussion on cognates, see Section 2.4
22Software available at https://github.com/Waino/morfessor-cognates.

89

https://github.com/Waino/morfessor-cognates


Subword segmentation

languages separately. M1 The probability of an analysis

P(s, t)=



∏I
i=1 P(si) P(ti) P(ei) if |s| = |t|

0 if |s| ̸= |t|∏I
i=1 P(si) if t=;∏I
i=1 P(ti) if s=;

(4.18)

is defined based on a 1:1 alignment between the morph sequences. Analyses
with different number of morphs are not allowed. The string edit operations ei

transforming the morph si to ti are based on the Levenshtein (1966) algorithm.
One side of the pair is allowed to be missing, in order for words for which no
cognate pair was found to be used during training.
L5 The MAP loss function

L(θ,D)= − logP(θs) − logP(θt) −γ logP(θe)

−α logP(Ds |θs) −α logP(Dt |θt) −αγ logP(De |θe)

HRL target LRL target edits
(4.19)

divides both lexicon and corpus coding losses into three parts: one for each
language (θs,Ds and θt,Dt) and one for the edits transforming the cognates from
one language to the other (θe,De). A new weight γ is introduced for the edits,
with value set to 10. The intuition for encoding the edits is that the changes in
spelling between the cognates in a particular language pair is regular. Coding the
differences in a way that reduces the cost of making a similar change in another
word guides the model towards learning these patterns from the data. L6 The
priors for the model parameters follow Morfessor Baseline, with the modification
that each model component has its own copy of the priors.

The Levenshtein (1966) algorithm is a dynamic programming algorithm
for finding the minimal edits transforming one string into another. The edit
operations are insertions, deletions, and substitutions of individual characters.
There are variants of the algorithm that omit substitutions or add transpositions.
Levenshtein distance between two strings is defined as the minimum number
of atomic character edit operations required to transform one into the other.

M3 Each of the languages has its own subword lexicon. Subword lexicons for
both languages are equivalent to Morfessor Baseline models, with form proper-
ties encoding the string representations and usage properties encoding the morph
frequencies. The edit lexicon is of the same type as the other two lexicons. The
strings stored in the edit lexicon consist of a pattern and replacement, divided by
a separator character. The set of string edits minimizing the Levenshtein distance
are found. Edits that are immediately adjacent to each other are merged. Mod-
eling of sound length change is improved by extending the edit in both languages
to cover the neighboring unchanged character. The lengthening is only applied if
one side of the edit consists of the empty string ϵ, and the other contains another
instance of character representing the sound being lengthened or shortened. E.g.
the edit transforming short “a” to long “aa” is encoded as “a!aa” instead of
“ϵ!a”. Edits with an empty string on one side are undesirable, as the empty
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y h t e e n k u u l u v u u s p o l i t i i k k a a

ü h t e k u u l u v u s p o l i i t i k a

Figure 4.2. Edits found by the Cognate Morfessor algorithm to map between a cognate pair
in Estonian and Finnish. The second and third edits demonstrate vowel length-
ening, and the last includes a doubled consonant. The fourth edit has the same
Levenshtein cost as the pair of vowel shortening “i!ii” and lengthening “ii!i”
that would be correct.

context matches everywhere, making overuse possible. Figure 4.2 shows the edits
in an example pair of words.
The restriction that words must have an equal number of morphs is not always

a good fit for language use. E.g. Finnish suffix “++n” marking the genitive fre-
quently lacks a correspondence in Estonian. To maintain the equal number of
morphs in both languages, either the Finnish genitive must be undersegmented,
or worse, the Estonian stem oversegmented. In this case it may be preferable
to allow a single extra morph to be added at the end of words, by introduc-
ing an end of word symbol that may be segmented like an ordinary character.
E.g. “silma!silmän” can be segmented as “silma++ϵ” and “silmä++nϵ”. In
post-processing, the empty morph is removed from the Estonian analysis.

M4 While the grammar is more complex than in Morfessor Baseline, it can
still be considered parameter-free. The restriction that cognate pairs must be
segmented into the same number of morphs can be imposed without needing
parameters. While the edit operations could be viewed as a part of the grammar,
it is more descriptive to place them in the lexicon, considering that they are of
the same form as the morph lexicons. A7 Cognate Morfessor is initialized
with pairs of whole words (potentially empty), one for each language. A8 The
restriction requiring both sides to be segmented into the same number of morphs
needs to be imposed during training. To maintain the condition, both sides of the
pair are reanalyzed simultaneously. The recursive splitting procedure must split
the n-th morph on both sides into two parts, or leave both unsplit. Figure 4.3
visualizes the local search neighborhood for the word pair “loo++mise++ks” and
“luo++mise++ksi”, when reanalyzing the central morph pair. If “mise” is split
into “mi++se” on both sides, no edits are required. Deciding to split e.g. into(
(“m++ ise”, “mis++e”), (“ϵ!is”, “is! ϵ”)

)
would require adding two edits to the

edit lexicon. Splits resulting in an empty morph on either side are not considered.
A9 When decoding, only one side is available. This enables use of the exact
same generalized Viterbi as in Morfessor Baseline. Edit operations need not be
considered during decoding.

4.4.5 Semi-supervised neural segmentation

Semi-supervised sequence labeling is an effective way to train a low-resource mor-
phological segmentation system when the aim is a linguistic segmentation, and
even a small amount of labeled data is available. In this setup, morphological
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Figure 4.3. Bilingual recursive splitting in Cognate Morfessor.

segmentation is viewed as a sequence labeling task: the boundary between each
character is labeled with the information required to determine if it is a morph
boundary or not.
Semi-supervised training can be used to hybridize generative and discriminative

training methods. The idea is that the generative model is used to find statistical
patterns in the large unannotated data. Encoding the decision of the generative
model as features for the discriminative model allows it to exploit the found
patterns. At the same time, the process frees up capacity of the discriminative
model for learning to determine when the predictions of the generative model are
reliable. Essentially the discriminative model only needs to learn to correct the
mistakes of the generative model.
Ruokolainen et al. (2014) present an approach for combining generative features

from Morfessor for discriminative training of a conditional random field (CRF).
The success of neural methods in high-resource morphological segmentation (e.g.
Wang et al., 2016) motivates an attempt in Publication IV to apply a similar
feature set enrichment approach with a neural sequence tagger,23 for use in a low-
resource setting. Morfessor FlatCat (see Section 4.4.1) is used as the generative
segmentation method.
Morfessor FlatCat is an especially good choice for producing features for use

in discriminative training. Discriminatively trained methods excel in modeling
of suffixation, but have difficulty learning to segment the boundaries between
stems in compound words (See Publication II). HMM morphotactics improves
the segmentation of compound words, by allowing an increase in the overall level
of segmentation without causing oversegmentation of stems.
A factored input representation is suitable for use with a neural system. The

FlatCat segmentation decision and predicted morph category label are indepen-
dently embedded. These factor embeddings are concatenated to the character
embedding. The morph category labels included in the human annotations (see
Section 4.4.6) enable the use of a simple target-side multi-task setup (compare to
Section 5.5.7) to predict them in addition to the segmentation boundaries. The
23Software available at https://github.com/Waino/OpenNMT-py/tree/same_length_
decoder.
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Subset Version 1 Version 2

Development 100 199

Training 643 1044
of which actively selected 346 584
of which randomly selected 311 500

Testing 357 796

Table 4.2. The number of annotated word forms in the two versions of the North Sámi mor-
phological segmentation data set. As the same word form can be selected by both
random and active selection, the two subsets of the training set are not disjoint.

output vocabulary is extended to cover all combinations of segmentation decision
and category label. This is feasible due to the very small number of segmentation
labels (BMES + end symbol) and morph categories (stm and suf), resulting in
a combined output vocabulary of 10 labels.
A two-step semi-supervised training procedure is used. The training data con-

sists of a large unlabeled set, and a smaller labeled training set. The labeled
training set is further divided into two parts. The generative model (Morfessor
FlatCat) is trained in a semi-supervised fashion using the first part of the labeled
training set together with the unlabeled data. The words in the second part
of the labeled training set are segmented using the generative model. Now the
second part of the labeled data includes two segmentations associated with each
word: predicted and gold standard. A discriminative model is then trained on
the second part of the labeled training set. In the second step, the predictions
of the generative model are fed into the discriminative model as augmented fea-
tures, while the gold standard segmentation is used as the target sequence. The
decoding is also a two-step procedure: first the words of interest are fed through
the generative model to produce the features. The final segmentation can then
be decoded from the discriminative model.
Publication IV argues that segmentation is best formulated as a tagging prob-

lem, not a sequence-to-sequence problem. Seq2seq methods are easy to apply, as
you can often take e.g. existing neural machine translation software and train
it with appropriately preprocessed data. However, arbitrary length sequence-to-
sequence transduction is not the optimal formulation for the task, as the output
vocabulary and number of parameters are unnecessarily large, and small data sets
may not be sufficient for learning to copy the correct characters from input to
output. The model is allowed to predict any symbol from its output vocabulary,
although only two symbols are valid at any given timestep: the boundary symbol
or the actual next character. Kann et al. (2018) apply the seq2seq model for
low-resource morphological segmentation, and address this problem by adding
an auxiliary autoencoder task.
The proposed neural sequence tagger uses a simplified architecture that is easy

to implement by modifying existing NMT software. The encoder is a standard
single-layer bidirectional LSTM. The decoder is a single-layer LSTM, which takes
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Figure 4.4. Active learning procedure for eliciting morphological segmentation annotations.

as input at time t the concatenation of the encoder output at time t and an
embedding of the predicted label at t−1. The attention mechanism has been
removed, with the encoder-to-decoder conditioning using a hard-coded index that
always moves one step forward. Alternatively, the time-dependent connection to
the encoder could also be described as a hard-coded diagonal monotonic attention.
Note that the dependence of the decoder on previous decoder states and previous
predictions is unmodified from the standard LSTM.
Decoding uses a lightly modified beam search, in which the probability of the

end-of-sentence symbol is modified to ensure output of the correct length. Sorokin
(2019) decodes from a convolutional sequence tagger using the Viterbi algorithm.
While the Viterbi algorithm is better suited to the task, the required modifications
to the software are also larger.
The model proposed in Publication IV is much smaller than the seq2seq baseline,

requiring only 5% of the number of parameters. The reduction is due to the
much smaller target vocabulary, and the fact that the proposed model requires
no attention mechanism. The optimal network size in terms of number of layers
and vector dimensions was also smaller in the experiments.

4.4.6 North Sámi morphological segmentation data set

Publication III presents a data set for semi-supervised training of morphological
segmentation for the Uralic low-resource language North Sámi, collected using
a novel active learning setup. The data set is based on two corpora: The list
of unannotated words is computed from Den samiske tekstbanken (Sametinget,
2004), and the pool of words to annotate from the UIT-SME-TTS corpus. There
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Setup Publication |D(L)| Pre " Rec " F1"

Morfessor EM+Prune U V 0 81.9 72.1 76.7
Morfessor Baseline U II 0 76.3 76.3 76.3
Morfessor Baseline U V 0 85.0 68.5 75.9
Adaptor Grammar U II 0 62.2 84.4 71.7
Morfessor FlatCat U I 0 84 60 70
SentencePiece U V 0 75.9 61.9 68.2
Morfessor CatMAP U I 0 89 51 65

CRF SS II 1000 89.3 87.0 88.1
CRF S II 1000 91.6 81.2 86.1
Morfessor FlatCat SS II 1000 86.9 85.2 86.0
Morfessor Baseline SS II 1000 84.4 83.9 84.1
Adaptor Grammar SS II 1000 76.7 82.3 79.4

Table 4.3. Boundary Precision (Pre), Recall (Rec), and F1-score results for the Morpho Chal-
lenge 2010 English test set. Methods in boldface are contributions of this the-
sis. Learning setups are abbreviated unsupervised (U), supervised (S), and semi-
supervised (SS). |D(L)| indicates the number of annotated samples used in training,
and " indicates that higher scores are better.

are two published versions of the annotation data set.24 The sizes of the data
sets are shown in Table 4.2.
In the annotated part of the data set, each word is associated with one or more

morphological segmentations. Each morph is additionally categorized as a prefix,
stem, or suffix, e.g.

buokčevuojažiid buokče/stm vuoja/stm ži/suf id/suf

In addition to inflectional suffixes, also derivational suffixes that convert nouns
into verbs are segmented, if the boundary is distinct. An exception was made in
the case of certain lexicalized stems, appearing to end with a derivational suffix
which has lost its conventional function. A further challenge was posed by the
extensive stem alternation and fusion in Sámi. Consistency was maximized by
placing the morphophonological alternation on the stem side of the segmentation
boundary.
The annotations were produced by a single Sámi scholar, who is not a native

speaker of Sámi. As a quality control, a second non-native Sámi speaking linguist
independently reannotated 815 of the words, resulting in Cohen’s kappa (Cohen,
1960) of 0.82, within the definition of almost perfect inter-annotator agreement.
The annotations were collected using an annotation tool developed specifically
for this purpose.25 Words to be annotated were shown in context, to allow dis-
ambiguation of homonymous inflections.
24Available from http://research.spa.aalto.fi/speech/data_release/north_
saami_active_learning/
25Software available at https://github.com/Waino/morphsegannot.
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Setup Publication |D(L)| Pre " Rec " F1"

Adaptor Grammar U II 0 68.1 68.1 68.1
Morfessor EM+Prune U V 0 72.0 55.8 62.9
Morfessor CatMAP U I 0 76 51 61
Morfessor Baseline U V 0 62.3 58.2 60.2
SentencePiece U V 0 75.7 49.3 59.7
Morfessor Baseline U II 0 70.2 51.9 59.7
Morfessor FlatCat U I 0 66 52 58

CRF SS II 1000 89.3 87.9 88.6
CRF S II 1000 88.3 79.7 83.8
Morfessor FlatCat SS II 1000 81.6 80.2 80.9
Morfessor Baseline SS II 1000 76.0 78.0 77.0
Adaptor Grammar SS II 1000 69.7 77.6 73.4

Table 4.4. Boundary Precision (Pre), Recall (Rec), and F1-score results for the Morpho Chal-
lenge 2010 Finnish test set.

Active learning was applied to collect the annotations more efficiently, improv-
ing over random selection. A brief collection effort of this type results in a very
small set of annotated words, which is still enough for a significant improvement
when used in semi-supervised training. Figure 4.4 shows the active learning pro-
cedure.

(RQ1.3) With 300 words annotated with our active learning setup, the perfor-
mance of Morfessor FlatCat in morph boundary F1-score sees a relative improve-
ment of 19% compared to unsupervised learning and 7.8% compared to random
selection. The improvement over random selection was consistent over several
sets of words with different morphological patterns. The largest benefit of the
annotations was in the modeling of suffixation.
With the largest amount of annotations, the best query strategy for North Sámi

combines uncertainty sampling with representative sampling (see Section 3.4.1).
Strong performance is also achieved using a new proposed strategy based on cov-
erage of word initial and final substrings, called IFSubstrings. It is inspired
by the feature selection method called coverage by Druck et al. (2009), which
increases the coverage of the feature space by selecting features that are dissim-
ilar from already chosen features. A set of binary features Ω(w) is defined to be
substrings starting from the left edge (initial) or ending at the right edge (final)
of the word w.
In IFSubstrings, the next annotation is selected according to

At+1 = argmax
w∈A

∑
s∈Ω(w)

I
(
s ∉Ω(A j)∀ j ∈ {1 . . . t}

) C(s)
N|s|

(4.20)

Ω(w)= {
w0:k,w(|w|−k):(|w|) | k ∈ 1 . . .5

}
(4.21)

where I is the indicator function. The occurrence count C(s) is normalized by the
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Setup Publication |D(L)| Pre " Rec " F1"

Adaptor Grammar U II 0 72.7 76.5 74.6
Morfessor EM+Prune U V 0 84.8 58.7 69.4
Morfessor Baseline U V 0 78.2 58.4 66.9
SentencePiece U V 0 75.2 60.0 66.8
Morfessor Baseline U II 0 67.9 65.8 66.8
Morfessor CatMAP U I 0 83 50 62
Morfessor FlatCat U I 0 88 38 53

CRF SS II 1000 89.3 92.0 90.7
CRF S II 1000 90.0 87.3 88.6
Morfessor FlatCat SS II 1000 84.9 92.2 88.4
Morfessor Baseline SS II 1000 85.1 89.4 87.2
Adaptor Grammar SS II 1000 77.0 90.9 83.4

Table 4.5. Boundary Precision (Pre), Recall (Rec), and F1-score results for the Morpho Chal-
lenge 2010 Turkish test set.

average occurrence count for substrings of the same length N|s|. In a simulated
experiment using Finnish, IFSubstrings gave the best performance for all sizes
of annotated training data.

4.4.7 Summary of intrinsic evaluation

Tables 4.3 to 4.5 show bpr results for three languages in the Morpho Challenge
2010 data set Kurimo et al. (2010a,b): English, Finnish, and Turkish. The
training sets contain ca 878k, 2.9M, and 617k word types, respectively.
Table 4.6 shows bpr results for North Sámi. Training data consists of 691k word

types extracted from Den samiske tekstbanken corpus (Sametinget, 2004). The
test set is 796 word types from version 2 of the data set collected in Publication
III.
Note that the unsupervised results use development set based tuning of model

hyper-parameters, which for Morfessor methods means α-tuning (Equation 4.12).
For Adaptor Grammars, tuning entails selecting the specific form of the morpho-
logical grammar and inferring values for hyper-parameters. Morfessor CatMAP
is the exception, as it does not support tuning.
Morfessor EM+Prune ranks high in the unsupervised setting, having the best

F1-score for English, and second best for the other languages. For Finnish and
Turkish the top scoring system is Adaptor Grammar, which performs less well for
English and extends poorly to semi-supervised training. Adaptor Grammars have,
to the best of my knowledge, not been applied to North Sámi. As Publications III
and IV focused on the semi-supervised setting for which Adaptor Grammars are
not well suited, I did not select it as a baseline. Morfessor FlatCat is strong when
used with semi-supervised training, but not as suited for unsupervised training.
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Setup Publication |D(L)| Pre " Rec " F1"

Morfessor Baseline U V 0 75.7 60.7 67.4
Morfessor EM+Prune U V 0 73.0 62.1 67.1
SentencePiece U V 0 65.3 61.3 63.3

Morfessor FlatCat SS IV 200 78.2 77.6 77.9

Morfessor FlatCat AL III 297 77.2 84.2 80.5

CRF SS IV 1044 86.3 85.2 85.7
CRF S IV 1044 87.7 83.3 85.4
Neural Sequence Tagger SS IV 1044 84.3 85.6 84.9
Seq2seq SS IV 1044 87.7 80.2 83.7
Neural Sequence Tagger S IV 1044 83.3 83.9 83.6
Seq2seq S IV 1044 86.9 78.6 82.5
Morfessor FlatCat SS IV 1044 74.3 84.1 78.9

Table 4.6. Boundary Precision (Pre), Recall (Rec), and F1-score results for North Sámi. Note
that even models marked semi-supervised (SS) have benefited from active learning,
as the collected annotations are partly the result of active learning procedures.

(RQ1.3) Approximately 1000 annotations are sufficient for training a strong
fully supervised CRF model. Even with this generous amount of annotations, the
best performance is reached with semi-supervised training when using Morfessor
features in CRF. The importance of semi-supervised training increases when the
number of annotations decreases. Semi-supervised CRF with Morfessor FlatCat
derived features is the recommended way of applying Morfessor when aiming for
linguistic segmentation and having access to small amounts of annotated data.
Table 4.7 summarizes the most important similarities and differences between

the generative probabilistic subword segmentation methods described in this
chapter.
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“Translation can occur without understanding, and
understanding can occur without the possibility of

translation. (Lakoff, 1987)”

5. Machine Translation

This chapter begins with a brief overview of the task of translation, and con-
tinues with important milestones in the development of automatic systems for
the task of translation. The sections on early history of machine translation and
statistical machine translation are based on Koehn (2009) and Poibeau (2017).
The history of neural machine translation is based on Goodfellow et al. (2016).
For background and history of neural methods in NLP, see Section 3.2.2. Finally,
relevant subfields of machine translation are surveyed, before proceeding with the
contributions of the thesis.

5.1 Translation

Translation, whether performed by humans or machines, is the task taking a
text written in one natural language and producing another text, in a different
natural language, that communicates the contents of the original text as faithfully
as possible. There are many aspects of this faithfulness, involving semantics, tone,
style, and structure. Ideally a translation should be both adequate and fluent.
Adequacy means that the translation maintains the semantic content of the
original. Fluency refers to the translation being good, grammatical language,
and also maintaining an appropriate style and tone.
Good human translation requires in-depth understanding of the source text sub-

ject matter, a deep knowledge of the target language, and an adequate knowledge
of the source language. The asymmetry in needed language competence is due to
the fact that subtle mistakes of grammar need only to be avoided in the target
language.
For machine translation, the holy grail of fully automatic high-quality transla-

tion (FAHQT), or human-equivalent publication-ready translation, is a high bar
for current systems. While claims of parity with human translators have been
made (Hassan et al., 2018), the claims have been criticized for using an evalua-
tion methodology that is not appropriate for making such claims (Toral et al.,
2018; Läubli et al., 2020). To assess the usefulness of machine translation, it is
therefore necessary to ask how the translation will be used. Commonly three use
cases are identified: assimilation, dissemination, and communication.
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In assimilation or gisting, a user initiates a fully automatic translation for
content produced by someone else, in a language the user does not master. The
translation is used to get a rough idea of the contents of the text. If the user
determines, based on the gist, that publication quality is required, a separate
translation process will be started. The quality demands are therefore low, but
the speed should be fast and cost should be low. There is a large demand for this
type of translation. Free services such as Google translate or Bing have pressed
the expected cost to zero.

Dissemination requires publication-ready quality. The translation is typi-
cally requested by the producer of the content, which enables quality-increasing
approaches that are not available in the gisting use case. The required level of
quality can be achieved either by controlling the input to the translation system
using methods such as controlled language or pre-editing, or alternatively by hav-
ing a human translator post-edit the output. Speed and cost are less constraining.
The quality of the machine translation needs to be high enough to ease the work
of the translator. If the quality is too low, it will be more efficient to translate
without help from MT. It is also important to consider the way in which the
machine translation is presented to the translator in the user interface.
In the use case of communication, two or more users wish to communicate

using different languages. Speed is of the essence: optimal translation would be
simultaneous to the original speech. The quality does not need to be as high as
for dissemination. Users may tolerate some errors, and it is possible to iterate by
asking for clarification if the message is not understood.

5.1.1 Challenges

There are many challenges that make achieving adequacy and fluency difficult.
Text is a form of communication between an author and one or more recipients.
Translation is intended to adapt the communication for new recipients, who may
not share the cultural background and world knowledge of the original recipients.
The translator may need to paraphrase or explain certain expressions, if there
is no direct correspondence. Finding an appropriate reformulation is difficult,
especially for idiomatic and formulaic expressions. Explicating often requires
adding external knowledge that is needed by the new recipient but not included
in the source text. Natural language is inherently ambiguous in many ways.
Attempting to resolve the ambiguity results in a circular problem where the
meaning of words is determined from the context, but the meaning of the context
is constructed from the individual words that it consists of.

Metaphorical language, idioms, and formulaic expressions pose a major chal-
lenge. Metaphorical language is surprisingly common, even outside of poetry
and artistic prose (Lakoff and Johnson, 1980; Lakoff, 1987). The commonly used
metaphors are not always shared between languages, necessitating the translator
to devise a different metaphor capturing the same meaning, or to replace the
metaphor with a more concrete expression. For example the Finnish expression
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“heittää lusikka nurkkaan” should not be translated literally as “throw the spoon
in the corner”, but instead either using a different idiom “kick the bucket” or
non-metaphorically as “die”.
Current machine translation systems are only able to memorize metaphorical

language from large data sets, but are not able to learn to generalize such rich
and abstract concepts for analyzing language, or to combine them with “common
sense” world knowledge. For this reason machine translation is at the moment
best suited for factual domains, such as news text or technical text. Metaphorical
language is used even in these domains, but to a lesser extent than in prose
and poetry. Some examples from the domain of financial news include using the
expression “burning money” when the money is merely being spent, or “taking the
temperature of the market”. Scientific text benefits from being low on ambiguity
and metaphorical language, but is instead challenging due to the importance of
rare jargon terms and precise distinctions. In scientific and technical texts, the
exact choice of term can be important, and fuzzy-matching to a related term
may introduce subtle errors. The most difficult domains to translate are the ones
that require sensitivity to cultural and artistic values. Some progress is being
made even in these difficult domains. For example Toral and Way (2018) report
that 17%–34% of machine translated sentences from three novels are perceived
by native speakers to be of human-equivalent quality. Still, human translators of
literature and poetry will not be made obsolete anytime soon.
Even mundane texts present a wide array of challenges. Language diversity

is one such challenge. While closely related languages include many concepts,
expressions, and linguistic attributes that can be mapped using a quite shallow
analysis, the more distant the languages are, the more abstraction is required.
One result of language diversity is lexical asymmetry, e.g. when translating

Finnish “katto” requires choosing between “roof” and “ceiling” as that distinction
is not made in the source language.1 Another type is syntactic asymmetry, e.g.
whether certain properties are expressed through having (“The poor don’t have
any money”) or being (“Köyhät ovat rahattomia”2). There are various forms of
morphological asymmetry, e.g. different gender and number systems. Sometimes
there are even morphological long-range dependencies, such as when German verb
prefixes are moved to the end of the sentence: “Ich fahre morgen los”.
As productive morphology results in a large number of word forms, morphologi-

cally rich languages suffer from data sparsity issues when estimating word-level
statistics. Differing word order between source and target languages poses chal-
lenges for machine translation, as the units that compose the source must be
reordered in addition to being translated. Free word order on the target side
poses potentially an even larger problem, as statistics of discrete representations,
e.g. n-grams, are further spread out over variations in word order. The trans-
lation system needs to both select a reasonable word order, and make sure that
morphological markings end up on the correct target words. Even evaluation
1See discussion on valeur in Section 2.1.
2Finnish. Literal translation: the poor are without money
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is more challenging for morphologically rich languages, as standard evaluation
measures operate on word-level statistics.3
The data can vary in quantity, quality, and appropriateness of domain. When

using machine learning, the domain or domains from which the training data
are gathered affects the usable vocabulary. To correctly use the jargon, or do-
main specific terminology, requires training data from that domain. Even a large
amount of data from a different domain might not be helpful in learning those
terms. Typically all three challenges affect the low-resource languages: when
data is hard to come by, even noisy and out-of-domain data must be used.
The challenges of ambiguity, data sparsity, and difficult evaluation are affected

by subword segmentation. Translational ambiguity can be increased by target
side morphological complexity, when one word can align to multiple different
inflections. Segmenting the stem from the affixes removes this extra ambiguity,
freeing up more resources for modeling the irreducible translational ambiguity.
A poor segmentation might increase ambiguity, by introducing arbitrary distinc-
tions through inconsistent segmentation decisions. Segmentation alleviates data
sparsity, but at the cost of longer symbol sequences. Long sequences cause longer
dependency spans, and may require larger computational resources. Evaluation
can be made more reliable by considering subword information.
For some sentences the challenges are temporarily absent, and the shallow un-

derstanding of current methods is enough to produce a perfect translation. Only
viewing such happy occasions can give a sense that the problem of translation is
close to being solved, but perhaps this is an Eliza-effect.4 To avoid anthropomor-
phizing machine learning systems, it is important to carefully analyze the errors
they make.

5.1.2 Reducing other tasks to machine translation

When speaking of applications of machine translation, it is useful to separate
actual translation tasks from tasks that resemble translation and can be solved
using translation software. Translation always involves mapping between two or
more natural languages. The natural language may be represented in various
modalities, e.g. text, speech, or sign language. It is possible that source and
target are in different modalities. The language can be used for communicating
knowledge from various domains, e.g. news, biomedical, or social media. We
can therefore define subtasks, such as text-to-text news translation, or speech-to-
speech meeting translation.
Related, translation-like tasks involve mapping from one sequence to another

so that one or both sequences comprise natural language. These tasks include
summarization (Rush et al., 2015), parsing (Dyer et al., 2015), question answer-
ing (Yin et al., 2016), generating interpretive text (e.g. image captions Bernardi
et al., 2016), and morphological tasks (Kann et al., 2018). In cutting edge re-
3Evaluation of MT is discussed further in Section 5.4.
4See Chapter 1 on the ELIZA chatbot.
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search, an attempt to translate brain activity to text has been made (Makin
et al., 2020). The methods can also be applied to non-linguistic string manipula-
tion systems, such as DNA sequences, music score sheets, or transcripts of chess
games.

5.1.3 Approaches

One of the important decisions when building a machine translation system is the
choice of translation units, i.e. how large chunks of text to translate at a time.
In machine translation, the main reason for restricting the translation unit is
computational, but even human translators divide a text in order to make it more
manageable and conserve working memory. However, human translators are able
to retain context from previously translated units. Translation equivalents
are cross-lingual near-synonyms, either words or phrases. Most sentences are not
fully decomposable into translation equivalents, unless the languages are very
similar.

Word-for-word translation is an approach that results in low quality trans-
lations, except perhaps in rare cases involving closely related languages. Word-
for-word translation produces stilted language, where the structures of the orig-
inal language shine through in unnatural ways. In the worst cases the result is
a “word salad” that is very difficult to understand. Good translation depends
on analogies between concepts rather than a simple mapping of words and ex-
pressions. Current machine translation systems do not perform word-for-word
translation. However, when moving to larger units, a similar problem recurs.
Most systems decode a sentence at a time and do not retain context between sen-
tences. Statistical machine translation systems are not even truly sentence level,
as they construct their hypothesis from shorter statistical phrases. The idea of
constructionism is to divide text into relatively independent units from which
sentences can be constructed. Current state-of-the art neural machine translation
systems are able to use the full sentence context, although they can still be
fooled by a misleading strong local context. Document-level or discourse level
information is only rarely used by current systems. Even systems described as
document-level typically only use neighboring sentences as context (Tiedemann
and Scherrer, 2017; Popel et al., 2019). Some exceptions using full document
context exist (Hardmeier et al., 2013; Junczys-Dowmunt, 2019).
Systems can be divided based on the level of abstraction into three categories:

direct, transfer, and interlingual systems. The Vauquois triangle, reproduced in
Figure 5.1, visually represents the level of abstraction of the transfer. Direct
translation systems map the source directly into the target, which originally
meant a word-for-word translation. Transfer translation involves performing
morphological, syntactic, and/or semantic analysis of the source, mapping the re-
sulting structures using transfer rules, and finally generating the target language
by generation steps that are the inverse of the analysis steps. Transfer is generally
fit to a particular language pair. Interlingual systems extend the analysis all
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Figure 5.1. Vauquois triangle, showing machine translation as a combination of analysis rais-
ing the level of abstraction, and its inverse, generation. Although only syntactic
transfer is shown, transfer can occur at any level.

the way to an interlingua, a language-independent conceptual form, where all am-
biguity is resolved. Performing the analysis requires introducing external world
knowledge that is not explicit in the document. The amount of information that
must be added to the interlingual representation by inference from contextual
and world knowledge has no clear limit.
Processing in the form of analysis and generation cannot truly add information

to the text. It can transform and rearrange the information into a more accessible
form, e.g. by inferring information from the global structure of a sentence and
making it available from local context by adding some annotations. It can also
destroy information e.g. when misspellings or casing variants are normalized. In
practice, an attempt is made to turn implicit information into explicit. This
involves guessing, and the risk of incorrect analysis.
Systems are further divided according to the machine learning paradigm: rule-

based (RBMT), example-based (EBMT), statistical (SMT), and neural (NMT)
machine translation. The paradigms are discussed in the upcoming sections.
All the data-driven paradigms, i.e. all the paradigms except for rule-based

machine translation, share the property that they define conditional language
models P(t j | t0:( j−1),s), which generate the target sequence t conditioned on both
previously generated target tokens and the source s.

5.2 From historical to modern machine translation

This section presents a brief summary of the history of machine translation.

5.2.1 Early machine translation

The idea of automatic translation was invented before there was any way to prac-
tically implement such a system. To the best of my knowledge, the first time the
idea was formalized was in a 1939 patent by Petr Petrovich Troyanskii (Hutchins
and Lovtskii, 2000). After the second world war, electronic computers developed
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at a rapid pace, and began to be applied also to NLP tasks. There was both a
practical need for machine translation, e.g. to translate texts from Russian to
English for the use of Cold War military intelligence, but also a scientific interest
in empirical exploration of how language works.
The first machine translation system to be built was the demonstration system

of Georgetown University in 1954. It used a bilingual dictionary of 250 words
and 6 grammar rules to translate a cherry-picked set of 49 Russian sentences into
English. From the 1940s to the 1960s, several teams in the USA, Great Britain,
USSR, and other countries worked on computer-based translation systems. This
was a period of optimism, as the extent and difficulty of the challenges involved
in machine translation were not yet known.
The period of optimism ended with the Bar-Hillel (1959) report and the famous

ALPAC report (Automatic Language Processing Advisory Committee, 1966).
Even though the reports recommended more research into fundamental computa-
tional linguistics and computer aided human translation (CAT), the overall tone
of the reports was very negative. The reports questioned both the practicality
of implementing machine translation of sufficient quality, and also the volume of
demand for translation compared to the number of available human translators.
As a result, the reports were followed by a “machine translation winter”. Funding
was reduced in the US, and enthusiasm waned.
Despite the reduced research interest, the first commercial systems were devel-

oped in the following decade. The company SYSTRAN was founded in 1968. The
system was initially rule-based direct translation, but would later develop into a
hybrid system. TAUM-Météo, a rule-based system for translating weather fore-
casts, started operating in 1976. It was developed at the University of Montreal.
The focus on a domain with restricted vocabulary and limited syntax made the
rule-based translation approach very successful.

5.2.2 Data-driven machine translation

A new period of rapid advances started in the late 1980s. It was enabled by
two prerequisites: the collection of sufficiently large corpora of parallel text, and
development of computers with sufficient capacity to process them.
The two main paradigms of machine translation of this era are example based

machine translation (EBMT) and statistical machine translation (SMT).
Transfer rules are complicated to write for a language pair such as English-
Japanese, with very different structures and fixed word order. EBMT (Nagao,
1984), obviates the need for explicit restructuring rules by using analogy from
examples. The process bears a resemblance to how human translators use trans-
lation memory: Software is able to retrieve examples of how similar fragments
were translated, to aid the translator with suggestions. EBMT is a nonparametric
method that stores the training corpus in raw form. During translation, the most
relevant training sentence pairs are retrieved, and a translation is constructed as
a synthesis of fragments extracted from them. Relevant sentences are such that
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contain fragments of the sentence to be translated.
The noisy channel model of communication from information theory by

Claude Shannon and Warren Weaver (Shannon, 1948) found many practical uses
e.g. in telecommunications, cryptography, and speech technology. It also acted
as an inspiration to statistical methods in machine translation.

“ When I look at an article in Russian, I say:
‘This is really written in English, but it has been coded in some strange symbols.

I will now proceed to decode’ (Weaver, 1955)”
The probability of the target sentence given the source sentence P(t |s) is de-

composed using Bayes’ theorem into the probability of s emerging from the noisy
channel when the input is t, called the translation model (TM), and the language
model (LM) probability of the hypothesis target sentence

P(t |s)=
TM︷ ︸︸ ︷

P(s | t)
LM︷︸︸︷
P(t) . (5.1)

SMT is based on statistics computed from the training corpus, e.g. language
internal collocations such as n-gram frequencies, and cross-lingual collocations
such as alignment frequencies. A high-probability translation is decoded using
these statistics. This factorization comes with several practical benefits. Firstly,
it allows a simpler distribution to be used for the translation model. A word-
for-word translation model can rely on an n-gram language model to account for
target language word order. Secondly, the language model can be trained from
monolingual data, which is typically available in much larger quantities than the
parallel training data.
Seminal work from the IBM research group includes the IBM alignment models

1 to 6 (Brown et al., 1990, 1993) and the Candide translation system (Berger
et al., 1994). The IBM word alignment models are still in use at the time of
writing. The IBM models incrementally add complexity, with (1) lexical, (2)
absolute position, (3) fertility, and (4) relative position -based alignment. IBM 5
corrects for deficiency, and IBM 6 adds an HMM alignment model.
All translation systems can be viewed in the analysis-transfer-generation frame-

work presented in Figure 5.1. In early word-level SMT, analysis and generation
had become vestigial, with only simple tokenization and case normalization. A
challenge is presented by the need for the generation component to be invertible,
so that training pairs for the transfer component can be produced from parallel
data in surface form.

Phrase-based statistical machine translation. While IBM models allow one-to-
many alignments using fertility, they can not model many-to-many alignments.
This is problematic for expressions requiring rephrasing and in particular id-
iomatic expressions. Automatic phrase extraction begins from word alignments.
Many-to-many alignments can be acquired by symmetrizing a source-to-target
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and target-to-source alignment, e.g. with the commonly used heuristic grow-
diag-final-and (Koehn et al., 2003). Contiguous aligned sequences (statistical
phrases) can then be extracted. Limiting extraction of phrases to spans that
cover a linguistic constituent is detrimental.
In phrase-based statistical machine translation (PB-SMT), a distinction can be

made between the tokens and the translation units. The sentences are tokenized
into lexical units (typically words, but also subwords have been used), but the
translation hypothesis is built by concatenating longer sequences of tokens.
PB-SMT systems combine several submodels (feature functions fk) with a

weighted log-linear model

P(t,a |s)= 1
Z(s)

exp

(
K∑

k=1
λk fk(s, t,a)

)
, (5.2)

where a is the alignment, Z(s) the partition function, and λk the submodel
weights. The most prominent translation system of this time is the PB-SMT
system Moses (Koehn et al., 2007).
PB-SMT can be seen as taking a small step in the direction of EBMT: the

output is composed out of literal examples in the form of entire extracted phrases,
and the choice of examples can be based on incorporating linguistic data e.g. using
a class-based LM or factored SMT (Koehn and Hoang, 2007).

5.2.3 Neural machine translation

The millennium shift saw a rapid increase in the amount of digital corpora from
the Internet, which propelled the performance of SMT systems to new levels
before ultimately reaching a plateau. The large data sets also fueled a paradigm
shift to neural machine translation (NMT) in the early 2010s, inspired by the
successes of deep learning in other fields.5
However, this was not the first time that neural methods were applied to NLP

or even MT. One early work by Chrisman (1991) introduces the neural encoder-
decoder architecture to MT. The neural network is divided into two subnet-
works: the encoder, which reads in input and encodes it into an intermediate
representation, and the decoder, which generates the output from the interme-
diate representation. It does not yet use the modern recurrent neural network
conditional language model decoder, instead basing the encoder and decoder on
sequential recursive auto-associative memory (S-RAAM). The method requires
an invertible encoding, in which both source and target are independently en-
coded into the same interlingual representation, making the model unable to
handle translational ambiguity.
The early NMT systems were not usable in practice. They were tested in

experiments with very small vocabularies and short, controlled sentences. The
first generally applicable systems used neural components as part of SMT systems.
Instead of replacing the entire translation system with a single neural network,
5See Section 3.2.2 for a general introduction to deep learning.
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the overall modular structure of the SMT system was retained, and individual
modules were replaced or augmented with neural networks. Schwenk et al. (2006)
use a neural network language model (NNLM) instead of an n-gram language
model. Devlin et al. (2014) add conditioning on the most likely source words
based on the alignment information from the decoder to the NNLM. Son et al.
(2012) use a neural network as the translation model. This allows using larger
context without suffering from sparsity-induced estimation problems. Cho et al.
(2014b) improve the estimated translation probabilities in the phrase table of a
PB-SMT system, by rescoring with an encoder-decoder architecture based on the
new GRU.6
Inspiration for end-to-end NMT architectures came from success in automatic

speech recognition (Graves et al., 2013). Seminal works by Kalchbrenner and
Blunsom (2013) and Sutskever et al. (2014) approach parity with state-of-the-art
SMT systems. Both use encoder-decoder architectures, with recurrent conditional
language model decoders. The encoder of Kalchbrenner and Blunsom (2013) is
convolutional, while Sutskever et al. (2014) uses a deep LSTM recurrent archi-
tecture instead. The convolutional network is not sensitive to the global order of
words in the sentence.
A bigger flaw shared by both methods is the bottleneck, which encodes the

entire source sentence into a single vector. Sutskever et al. (2014) try to alleviate
the resulting long dependency chains by reversing the order of the words in the
source sentence. This shortens the distance between the beginnings of source and
target, making it easier for the decoder to start generating the correct translation.
Ensuring that the end of the sentence is generated correctly must rely more on
target language modeling, as the distance from the source grows rapidly. The av-
erage distance between source and target words is unchanged. Cho et al. (2014a)
analyze the properties of encoder-decoder architectures with fixed length repre-
sentation. They find that this type of architecture works well on short sentences,
but performance rapidly decays as the length of the sentence or the number of
unknown words increases. The single vector bottleneck was not problematic for
Cho et al. (2014b) as the encoder only needs to represent a phrase rather than
a complete sentence. When used in end-to-end neural machine translation, the
bottleneck becomes a problem.
The attention mechanism7, applied to MT by Bahdanau et al. (2014), provides

a more complete solution to the problem, by creating a controllable connection
from the decoder directly to all timesteps of the encoder. In addition to allowing
the decoder to decide which encoder timesteps are most relevant to the symbol
currently being produced, attention also shortens backpropagation paths, and
increases the flow of information from encoder to decoder.
Although the attention mechanism was first used in combination with a recur-

rent encoder and decoder, Vaswani et al. (2017) show with their Transformer
architecture that the attention mechanism is sufficient for sequence modeling, ob-
6Recurrent units presented in Section 3.2.2.
7The attention mechanism presented in Section 3.2.2.

110



Machine Translation

viating the need to use recurrence or convolution. Transformers currently hold
the state-of-the-art for many NLP tasks.
A Transformer is a deep stack of layers, consisting of two types of sub-layer:

multi-head attention sub-layers and feed-forward sub-layers. Each sub-layer is
individually wrapped in a residual connection (He et al., 2016b) and layer nor-
malization (Ba et al., 2016). A layer normalized unit recenters and rescales
its activations using normalization terms computed separately for each example.
When used in translation, Transformer layers are stacked into an encoder-decoder
structure. In the encoder, the layer consists of a self-attention sub-layer followed
by a feed-forward sub-layer. In the self-attention, the output of the previous
layer is used as queries, keys, and values Q = K =V . The decoder includes a third
sub-layer, the context attention, which is inserted between the self-attention and
the feed-forward sub-layer. In context attention, Q is again the output of the
previous layer, but K =V is the output of the encoder stack.

5.3 Subfields of machine translation

This section surveys some subfields of machine translation that are relevant to the
topic of the thesis: how to represent the vocabulary items for MT from and into
morphologically rich languages, MT in low-resource settings, the use of cross-
lingual transfer through multilingual MT, and ways of exploiting monolingual
data.
In order to train a MT system for a language pair src!trg, three distinct

types of resources may be useful: (i) parallel data for the language pair of
interest src–trg, (ii) monolingual data in either src or trg, and (ii) data
in related languages, which can be either parallel data for other language pairs
(src–x, x–trg), or monolingual data. In the low-resource translation setting, it
is primarily the parallel data that is scarce. Monolingual data is easier to acquire
and typically more abundant. In addition, there may be related languages with
much more abundant resources.

5.3.1 Vocabulary construction

First, methods for constructing the vocabulary for the machine translation system
are considered. Some related ways of incorporating morphological information
into MT are also included. As the motivation for the use of subword segmen-
tation in NLP was given already in Chapter 4, this Section focuses specifically
on the translation setting. For a review of subword segmentation methods, see
Section 4.3.
Subword segmentation has become a standard in NMT. For example, in WMT

2019 shared tasks, two thirds of submissions used byte pair encoding (BPE), and
a quarter of submissions used SentencePiece (Barrault et al., 2019). The use of
subword segmentation is no longer limited to morphologically rich languages, and
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it has seen use in state-of-the-art methods in high-resource settings (Arivazhagan
et al., 2019b; Ng et al., 2019; Junczys-Dowmunt, 2019).

The problem of rare words
Word-level vocabularies may grow to unmanageable size, particularly in mor-
phologically rich languages.8 In addition, it may be necessary to restrict the
vocabulary of an NLP system for technical reasons, e.g. due to the difficulty
of estimating needed statistics for low-frequency items. The model capacity or
computational constraints might also be limiting factors.
Using a frequency cutoff is a simple way to perform the vocabulary restriction.

Words with a frequency below a chosen cutoff are treated in some special way.
Based on the frequency cutoff, the total vocabulary can be divided into three
parts: the frequent words included in the truncated vocabulary, the rare words
which are present in the training corpus but not in the truncated vocabulary, and
the out-of-vocabulary (OOV) words that are not included in the training corpus
at all. Rare words are a challenge for machine translation, and due to the long
tail of the Zipfian distribution, there is a large number of them.

Copyable words are a special class of rare words, for which there is a regular
mapping between the surface forms in the source and target. Due to the arbi-
trariness of the sign9, this is not usually the case. In the prototypical copyable
word, the source and target are identical character-for-character. In other cases
some transliteration is needed, in particular when the languages differ in orthog-
raphy. Proper names and some loan words are prominent examples of words in
this class. In some morphologically rich languages, proper names are inflected,
e.g. Finnish “Münchenistä Bordeaux’hon” (From Munich to Bordeaux). A part
of the string is copyable even in the case of inflected names. Cognates and loan-
words can undergo regular phonological and morphological transformations, e.g.
Latin “claustrophobia” and German “Klaustrophobie”.
When the size of the vocabulary is restricted, the question of how to represent

the words outside the vocabulary arises. Different tasks have different require-
ments for the representation of OOV words. In natural language understanding
tasks, e.g. classification, it may not be necessary to retain all of the informa-
tion contained in rare words. Collapsing non-discriminative distinctions—e.g.
misspellings, case variants, or some inflections—may be desirable. In natural lan-
guage generation tasks, on the other hand, the representation must include ev-
erything that is needed to generate the correct surface form. Machine translation
combines natural language understanding in the encoder with natural language
generation in the decoder. In a typical MT setup, there are 2–4 possible locations
where a representation is needed, as shown in Figure 5.2. It is possible to use
different representations in each location.
The simplest approach discards any rare and OOV words not included in

the truncated vocabulary. A slightly better solution instead substitutes a spe-
8See Section 2.1 for a discussion of vocabulary growth.
9See Section 2.1 for the arbitrariness of the sign.
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Figure 5.2. Four locations in MT where representations may need to be specified. Due to
the autoregressive nature of the NMT decoder, it also needs an input representa-
tion 2 . The intermediate decoder representation 4 is optional. The continuous
intermediate representation C is learned, not specified.

cial 〈unk〉10 token. Schwenk (2007) restricts the output vocabulary of a neural
language model to a short-list composed of the most frequent words. This ap-
proach is adequate when rare words can be ignored without much loss, e.g. in
understanding-oriented tasks, or when the neural language model is combined
with other models that use larger vocabularies. However, if the neural model
is used for generating natural language on its own, the 〈unk〉 approach is not
appropriate as output representation 3 . Some alternate method that allows the
system to generate also the rare words is needed.
One approach aims to alleviate the problem by enabling the use of very large

vocabularies. Representations 1 and 2 are easy to expand, but the output
distribution for 3 is problematic. Stochastic approximations of the categorical
distribution e.g. using noise contrastive estimation (Gutmann and Hyvärinen,
2010; Jean et al., 2015) can be used. Alternatively the draw from the categori-
cal distribution can be decomposed into a sequence of smaller draws, e.g. with
hierarchical softmax (Morin and Bengio, 2005) or structured output layers (Le
et al., 2011). Self-normalization (Devlin et al., 2014) avoids the heavy compu-
tation of the normalization denominator by learning weights that result in an
approximately normalized distribution.
The methods mentioned above are not specific to translation, and can be applied

to a wide range of suitable NLP models. In translation-specific approaches, the
class of copyable words can be approached with some methods particular to this
class. The copy mechanism (Luong et al., 2015b) uses numbered 〈unk〉s to
delegate handling of rare words to a post-processing step. The 〈unk〉s in the
source are numbered consecutively, and the decoder can refer to them using the
number. In a post-processing step, the referred words are either translated using a
dictionary, or copied without modification into the target sentence. For example,
translating from Swedish to English,
10The usage of the OOV and 〈unk〉 terms follows established practice, although it is not
consistent with using the term vocabulary for the fixed-size model vocabulary.
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Xyzzy är det magiska ordet i ADVENT 7!

〈unk1〉 är det magiska ordet i 〈unk2〉 7!

The magic word in 〈unk2〉 is 〈unk1〉 7!

The magic word in ADVENT is xyzzy .

If a copying mechanism is available, rare words are best kept together as a
single unit, to avoid copying errors. A copying mechanism is unable to inflect the
copied words. For such languages, the subword segmentation approach may be
preferable. When using subword segmentation, it is instead beneficial to segment
rare words heavily. If the segmentation is also consistent, it becomes possible to
decode the copyable words piece by piece, with the decoder attending to each
copyable piece in turn.

English-centric models
It has long been common in machine translation research to select English as the
target language. When English is not the target, it is typically the source. Even
experiments in massively multilingual settings are typically English-centric, us-
ing English as target, source, or both in turn (Arivazhagan et al., 2019b; Mueller
et al., 2020). When a morphologically rich language (MRL) is present, it is
typically on the source side with English as the target. There is a recent the-
sis by Passban (2018) focusing on translation from MRLs. Ongoing trends, e.g.
recent WMT shared task campaigns, are slowly bringing a change to the promi-
nence of English. Some exceptions involving e.g. translation between related
languages (Zhang, 1998; Tiedemann, 2009; Costa-jussà et al., 2018) and multilin-
gual NMT with experiments where neither side is English (Vázquez et al., 2019;
Platanios et al., 2018) exist. In spoken language translation, Bansal et al. (2019)
translate from the extremely low-resource Mboshi to French. Virpioja et al.
(2007) use a MRL on both source and target side, and both sides are segmented
into subwords.
The results of Koehn (2005) shed light on the difficulty of translating into MRLs

from typologically dissimilar source languages. They train 110 pairwise SMT
systems to translate between all of the languages in the Europarl dataset. Finnish
has the lowest average quality both as a source language and as a target language.
German and English are equally difficult to translate from, but German is much
more difficult when used as target language. While NMT has to some extent
leveled the playing field, results of WMT news translation shared tasks 2018 and
201911 give some rough indication that Finnish remains a difficult target language.
bleu scores for English!Finnish have remained much worse (8 bleu or more)
than higher-resourced languages such as Russian, German, and Chinese. Also,
Finnish!English bleu scores are higher (5.6–6.6 bleu) than English!Finnish
scores, while for Russian, German, and Chinese the asymmetry is smaller or
11Even though English↔Finnish was included as a language pair also in 2017, the year
is excluded from these observations as the transition to the NMT paradigm was still in
progress.
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even in the opposite direction.12 When extending the analysis to the online
reference systems, the asymmetry in favor of Finnish!English increases, with
large differences of 7.8–9.4 bleu.
As a counterargument, word-level metrics such as bleu are less well suited

to morphologically rich languages,13 which may result in overall lower scores
in the direction into MRLs. However, as Russian and German are morpholog-
ically rich, these discrepancies point at other contributing factors, such as the
amount of training data. Using additional metrics that are more suited to MRLs
shows that the choice of metric partly explains the asymmetry. Measured us-
ing LeBLEU,14 the difficulty of Finnish as target language is confirmed when
comparing to German but not when comparing to Russian. Finnish!English
is 3.9–6.0 LeBLEU better than the reverse English!Finnish. For German, the
opposite is true: English!German is better by 0.9–1.1 LeBLEU compared to
the reverse. Russian!English is is better by 3.0–7.4 LeBLEU compared to the
reverse, which is close to the Finnish asymmetry. Measured using chrF-2.0,
results are inconclusive.

Morphology in machine translation
Morphology has played an important part in machine translation since the be-
ginning. Already the early rule-based transfer systems included morphological
analysis of the source and morphological generation on the target side.
The introduction of SMT, with the word-level model of Brown et al. (1990),

represented a momentary return to direct translation. It did not take long for
Brown et al. (1992) to propose an extension into a statistical transfer system, by
adding pre- and postprocessing. The authors argue that all systems require at
least some kind of preprocessing, and thus there exist no systems purely in the
class of direct translation. Concerning basic preprocessing they discuss the chal-
lenges of tokenization, and introduce true-casing. A morpho-syntactic analysis is
performed on both source and target. They annotate words according to gram-
matical function (part-of-speech tag), perform some syntactic reordering, extract
inflectional morphology and perform some word sense disambiguation. Since then
these useful techniques have been reintroduced and extended upon several times.
In SMT, it is possible to improve individual component models—such as the

alignment model (Popović and Ney, 2004) or the language model (Botha and
Blunsom, 2014)—by making them morphology-aware.
Morphological generation and prediction are two related approaches to deal-

ing with morphologically rich target languages. Morphological generation re-
quires a fully specified morphological intermediate representation 4 , typically im-
plemented as a factored output representation (Koehn and Hoang, 2007; Avramidis
12Higher scores when translating from English, together with a larger number of submis-
sions in that direction, may be seen as an indication of increased interest in non-English
target languages.
13Evaluation metrics discussed further in Section 5.4.
14For LeBLEU, a contribution of this thesis, see Section 5.5.1.

115



Machine Translation

and Koehn, 2008; García-Martínez et al., 2016, 2020). Factored translation works
well with morphologically moderate languages such as French (García-Martínez
et al., 2020). Yeniterzi and Oflazer (2010) map English syntactic features into
factors needed to generate Turkish morphology. Factored input can also be used
on the source side 1 (Sennrich and Haddow, 2016). Morphological prediction
uses a multi-step translation process with an underspecified intermediate repre-
sentation 4 , e.g. a sequence of stems (Toutanova et al., 2008; Clifton and Sarkar,
2011). Talbot and Osborne (2006) learn what to simplify based on minimizing
lexical redundancy. Passban et al. (2018) augment a character-level decoder with
a second attention mechanism to retrieve information from an external morpho-
logy table.
In a factored representation, each word is represented by a tuple of factors,

e.g. lemma and morphological tags. An alternative is to interleave the different
types of information into a single sequence. Already Brown et al. (1992) use an
interleaved representation, containing words, morphs, abstract tags, and tokens
joining several of these:

He was eating the peas more quickly than I. 7!

He past_progr to_eat the pea n_plural quick er_adv than I.

More recent applications of interleaved intermediary representations include Gold-
water and McClosky (2005) and Tamchyna et al. (2017).
Language divergence is a significant challenge in MT. Many efforts have focused

on increasing the symmetry between languages in order to improve alignment.
Asymmetric granularity can be caused e.g. by compounding, when one language
uses a closed compound (“sähköpostijärjestelmä”) to represent a concept that
is written as an open compound in another language (“e-mail system”). Asym-
metric marking of grammatical properties can cause ambiguity, such as when
genderless “hän” aligns to both “he” and “she”.

Splitting closed compounds (Brown, 2002; Koehn and Knight, 2003; Popović
et al., 2006; Fritzinger and Fraser, 2010; Stymne and Cancedda, 2011; Huck et al.,
2017) is a simple yet effective way to increase symmetry. Compound words can
sometimes be translated compositionally, by splitting the compound into parts,
translating each part individually, and possibly rejoining the translated parts into
a new compound.
In segmented translation, the words are split into subwords. Work in seg-

mented translation has often started with a linguistically motivated morphologi-
cal analysis, yielded e.g. by a handcrafted analyzer implemented as a finite state
transducer (FST). Language-specific heuristics are used for selecting which parts
of the linguistic analysis should be represented. A typical approach is to select
a highly inflecting class of words and segment them for particular morphological
features (Nießen and Ney, 2000; Lee, 2004; Popović and Ney, 2004; El-Kahlout
and Oflazer, 2006; Oflazer and El-Kahlout, 2007; Bisazza and Federico, 2009;
Salameh et al., 2015). Goldwater and McClosky (2005) insert pseudo-words de-
rived from Czech source side morphology in places where the authors determine
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that an English function word is needed.
Instead of segmenting the morphologically richer side, Ma et al. (2007) and

Yeniterzi and Oflazer (2010) increase symmetry by joining consecutive words in
the morphologically less complex side. When translating from a MRL, symmetry
can be increased through morphological simplification. Lee (2004) start from
a fine-grained linguistic segmentation of the more complex side, automatically
identifying morphemes to join or delete.
To the best of my knowledge, Sereewattana (2003) present the first use of un-

supervised morphological segmentation in machine translation. The most
popular subword segmentation method for MT at the time of writing appears to
be BPE (Sennrich et al., 2015). Some other subword segmentation methods that
have been applied to MT include Morfessor Baseline (Macháček et al., 2018),
Morfessor CatMAP (Virpioja et al., 2007; de Gispert et al., 2009; Fishel and
Kirik, 2010; Clifton and Sarkar, 2011), Morfessor FlatCat15 (Ataman et al., 2017;
Ataman and Federico, 2018; Banerjee and Bhattacharyya, 2018), SentencePiece
(Kudo and Richardson, 2018; Kudo, 2018), and WordPiece (Schuster and Naka-
jima, 2012; Wu et al., 2016). In a related approach, Chitnis and DeNero (2015)
use compression based on Huffman codes to represent rare words as sequences of
common words.
When the target language 3 is represented using subword units, a desegmen-

tation process is required for generating the final surface forms. In the most
straightforward approaches, either word boundaries (“a wo rd”) or subword
boundaries (“a wo ++rd”) are marked with a reserved symbol to enable reversing
the segmentation. The boundary markers can attach to the previous or follow-
ing token, or be separate tokens. Stymne and Cancedda (2011) and Cap et al.
(2014) explore different strategies for a richer marking of word-internal token
boundaries. The aim is to allow the translation system to produce compounds
unseen in the training data, while imposing restrictions to discourage the gen-
eration of spurious or invalid compounds. Salameh et al. (2014) desegment by
decoding from a lattice of morphs. Dyer et al. (2008) use a lattice to represent
alternative segmentations of the input, allowing segmentation ambiguity to be
retained. In neural architectures, lattice decoding is implemented in the Lattice
LSTM (Sperber et al., 2017) and the Lattice Transformer (Zhang et al., 2019).
Another way of addressing segmentation ambiguity is to combine word-based

and segmented systems using system combination (de Gispert et al., 2009; Virpi-
oja et al., 2010; Srinivasan et al., 2019). Multiple different segmentations of the
same data can be used. Pirinen et al. (2016) see a benefit from a system combina-
tion including Morfessor FlatCat. A third method that embraces segmentation
ambiguity is subword regularization, discussed in Section 5.5.11.
As seen in Figure 5.2, the source 1 and target 2 3 do not need to use the same

type of units. Methods making use of this freedom to increase symmetry by only
segmenting one side were already discussed. It is also possible to intentionally
15Morfessor FlatCat was developed in the framework of this thesis.
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use different granularities for input and output, e.g. the cross-scale system
of Chung et al. (2016) uses BPE input and character output, while Costa-jussà
and Fonollosa (2016) does the reverse with character input and word output.
Decoder input 2 and output 3 are nearly always the same, although some ex-
ceptions exist (e.g. He et al., 2020). Multi-scale processing instead combines
components operating on units of different granularity into a single system. It
is possible to replace the source language embedding matrix with an embedding
function computed by a neural network with the characters of the source word
as input (Ling et al., 2015). Costa-jussà and Fonollosa (2016) apply this to the
NMT encoder. Vylomova et al. (2017) experiment with other subwords as in-
put, including Morfessor CatMAP. Morishita et al. (2018) compose embeddings
from multiple segmentations with different-sized BPE vocabularies. The hybrid
word–character decoder presented by Luong and Manning (2016) extends the
multi-scale processing to the decoder side. First a word-level decoding is per-
formed, with 〈unk〉 generated for rare words. A second character-level decoder
generates words to replace the 〈unk〉s, conditioned on the state of the word-level
decoder when generating that 〈unk〉. The Helsinki NMT system (Östling et al.,
2017), extended in Publication X, implements multi-scale processing on both en-
coder and decoder sides. Chung et al. (2016) base their decoder on a bi-scale
recurrent unit, with a faster and a slower layer. The slower layer is updated only
once the faster layer is done processing a particular subsequence, and is about
to reset itself using a gate. On the encoder side, Cherry et al. (2018) apply the
hierarchical multi-scale architecture of Chung et al. (2017) to learn a compressed
sequence representation. Concurrently, Kreutzer and Sokolov (2018) apply the
adaptive computation time architecture of Graves (2016) for the same purpose.
Concerning research into the role of morphology in machine translation, Bisazza

and Tump (2018) perform a fine-grained analysis of how various source-side mor-
phological features are encoded at different layers of the NMT encoder. They find
that morphological information is only encoded in the later layers of the encoder,
once context has been incorporated. Morphological information is not stored in
the embeddings. This could be seen as an argument for treating morphology as
a sentence-level phenomenon. Bisazza and Tump (2018) also find that morpho-
logical information is only captured to the extent that it is needed for accurately
generating the target. This supports pretraining multilingual models with either
related languages or a diverse set of languages. Belinkov et al. (2017) find that
character-based representations are much better than word-based representations
for learning morphology. The effect is especially prominent for low-frequency
words. Voita et al. (2019) analyze multi-head attention, finding that only a small
subset of attention heads appear to be important for the translation task, while
the rest can be pruned without seriously affecting the performance. Important
heads are specialized, having one or more interpretable functions, including at-
tending to adjacent words and tracking specific syntactic relations.
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Optimal granularity for machine translation
It has been shown that a linguistically correct segmentation does not coincide
with the optimal segmentation for purposes of alignment and translation. In
word alignment for SMT, Koehn and Knight (2003) find that the most linguisti-
cally accurate splits of German compounds do not result in the best SMT quality.
Habash and Sadat (2006) improve on the linguistic segmentation using rule-based
simplification, and Chung and Gildea (2009) through the use of statistical meth-
ods. Despite this, using unsupervised statistical segmentation methods for SMT
has yielded mixed results. In many of these studies, unsupervised segmentation
has worsened automatic scores compared to word-based translation (Virpioja
et al., 2007; Fishel and Kirik, 2010; Rubino et al., 2015; Pirinen et al., 2016;
Virpioja et al., 2010). The main benefit of segmentation has been a decrease in
the ratio of untranslated words. In SMT, oversegmentation breaks words into
units that are too small to carry meaning, and requires difficult many-to-many
alignments. Word-level models with back-off to subword segmentation for OOV
or rare words have been proposed (Yang and Kirchhoff, 2006; Pinnis et al., 2017).
Wu et al. (2016) experiment with a back-off segmenting OOVs into characters
in their mixed word–character model. Sennrich et al. (2017) resplit any rare
subwords until the entire vocabulary exceeds a frequency threshold.
In NMT, the correspondence of the subwords to linguistic morphemes is even

less important, as the encoders are able to determine the meaning of the units
in context. Recent research (Cherry et al., 2018; Kreutzer and Sokolov, 2018;
Arivazhagan et al., 2019b) indicates that smaller subwords are particularly useful
for cross-lingual transfer to low-resource languages in supervised settings. Fully
character-level translation has been approached using convolutional (Lee et al.,
2017), recurrent (Cherry et al., 2018), and Transformer (Gupta et al., 2019)
architectures. Even byte segmentation has been proposed (Costa-jussà et al.,
2017). Chung et al. (2016) find that character-level decoders outperform subword-
level decoders.
The downside of character-level models is that the sequences become very long,

which can substantially impact training times. Also, unless downsampling is
applied to reduce the sequence length in deeper layers, the depth of character-
level models may be limited by memory use. Although including character-level
models in the experiments of this thesis would have introduced useful points of
comparison, due to the prohibitive cost of training, I chose to focus on subword
models.

Unsupervised subword segmentation methods, tuned using criteria other
than linguistic fidelity, such as the size of subword lexicon or the frequency dis-
tribution of the units, have become the standard in NMT. While vocabulary
size tuning is typically performed using grid search, some automated approaches
have been proposed. Salesky et al. (2020) automatically tune the BPE lexicon
size for the task of NMT, by incrementally expanding the vocabulary with new
subwords. Libovický and Fraser (2020) do the opposite by starting with a BPE
subword lexicon and incrementally pruning until reaching a character model.
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Table 5.1. Example from NMT system overfitted to the language modeling task.

Estonian Source Laktoosi puhul see nii ju ongi!
English Overfit translation I’ve been thinking about it.
English Reference That’s the case with lactose!

5.3.2 Low-resource machine translation

Only a small subset of the world’s languages have corpora of sufficient size to
train state-of-the-art high-resource NLP systems. As parallel data is even more
scarce than monolingual data, the resource problem is aggravated for the task
of machine translation. This creates a need for machine translation methods
designed specifically for the low-resource setting.
Data-driven MT systems are conditional language models. The training sig-

nal for the language model is much stronger than for the conditioning on the
source. In a modern NMT system, the conditioning must pass through a natural
language understanding encoder and a cross-lingually aligning attention mech-
anism. When a vanilla NMT system is trained in a low-resource setting, the
learning signal may be sufficient to train the language model, but insufficient for
the conditioning (Östling and Tiedemann, 2017b). In this case, the MT system
degenerates into a fancy language model, with the output resembling generated
nonsense, with possibly high fluency but little relation to the source text. As an
example, Table 5.1 shows an output from an Estonian–English translation sys-
tem trained from parallel data of only 18000 sentence pairs. Mueller et al. (2020)
observe this language model overfitting phenomenon in a massively multilingual
but low-resource setting using Bible translations as the corpus. High fluency is
a known property of NMT (Toral and Sánchez-Cartagena, 2017; Koponen et al.,
2019). The user is more likely to trust a translation if it looks like a proper sen-
tence, and the user is unable to detect mistranslation without source language
competence. Due to the risk of undetected misunderstanding, high fluency but
low adequacy translations may score well under some evaluation settings, but
still be highly undesirable in practice.
The challenges of low-resource settings exacerbate the challenges of morpholog-

ically rich languages, due to a combination of small data and a large vocabulary.
The resulting data sparsity makes it difficult to estimate statistics for all but the
most frequent items. Even though continuous-space representations allow neural
methods to generalize well, they learn poorly from low-count events. Construct-
ing the vocabulary using subword segmentation16 can reshape the frequency
distribution of the basic units17 to reduce sparsity, and yield a more balanced
class distribution in the generator. Suitable subwords are also beneficial for ex-
16See Sections on vocabulary construction in MT (5.3.1)
and subword segmentation methods (4.3).
17Illustrated in Figure 5.6 on page 137.
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ploiting transfer from related high-resource languages (See Publication VIII) and
monolingual data. Besides subword segmentation, the most commonly used ap-
proach to low-resource MT involves exploiting auxiliary data, either parallel
data for other language pairs (Section 5.3.3) or monolingual data (Section 5.3.4).
Other approaches include active learning and crowdsourcing (Ambati, 2012).

Östling and Tiedemann (2017b) use external word alignments as supervision
for learning sentence reordering. They translate one source token at a time,
inserting the generated (possibly empty) target token anywhere in the output se-
quence using a position predictor. The NMT architecture and hyper-parameters
can be optimized for the low-resource setting, e.g. by using smaller and fewer
layers (Nguyen and Chiang, 2018) or by reducing batch size and increasing
dropout (Sennrich and Zhang, 2019). An effective architectural change adds
a lexical translation model to condition the generated output token directly on
the aligned source embedding, without incorporating context (Nguyen and Chi-
ang, 2018; Sennrich and Zhang, 2019). Nguyen and Chiang (2018) normalize
target-side embeddings to remove frequency bias. Mueller and Lal (2019) adapt
the model for each test sentence using a subset of similar training sentences.
Evaluations comparing NMT and PB-SMT under low-resource conditions have

had mixed results, with some finding in favor of NMT (Bentivogli et al., 2016;
Guzmán et al., 2019) and others (at least under some conditions) in favor of PB-
SMT (Toral and Sánchez-Cartagena, 2017; Lample et al., 2018b; Artetxe et al.,
2018a; Do Campo Bayón and Sánchez-Gijón, 2019). Popović (2017) finds that the
strengths of PB-SMT and NMT are complementary, suggesting opportunities for
hybridization. Koehn and Knowles (2017) identify worse quality in low-resource
settings and out-of-domain as challenges for NMT systems. They also point
out that even subword NMT shows weakness in translating low-frequency words
belonging to highly-inflected categories, e.g verbs.

Unsupervised machine translation
In the most extreme low-resource setting, unsupervised machine translation, no
parallel data at all can be used, only monolingual data from source and target
languages. By considering parallel data to be labeled and monolingual data to
be unlabeled, supervised MT corresponds to the low-resource training without
auxiliary data described in Section 5.3.2, unsupervised MT uses no parallel
data at all, and semi-supervised MT exploits a combination of small parallel
data and large monolingual data.
A scenario without any parallel data, but still abundant monolingual data, is

unrealistic in practice. Some small amounts of cross-lingual signal exists even
for fairly low-resourced language pairs, e.g. Bible translations, a bilingual dictio-
nary or even translated word lists and example sentences collected as language
documentation. Languages lacking any cross-lingual resources are unlikely to
have monolingual corpora of sufficient size and quality for the proposed unsu-
pervised methods. Artetxe et al. (2020b) argue that the strict unsupervised
scenario cannot be motivated from an practical perspective, but find other moti-
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vations for research into unsupervised cross-lingual learning (UCL). There is an
inherent scientific interest, in shedding light on theories concerning regularities
of structure between languages, e.g. the distributional hypothesis. UCL pro-
vides a simplified, standardized lab setting to improve our understanding e.g. of
embedding methods. Another use case deals with unknown or even non-human
languages.18 Finally, if almost the same quality as in semi-supervised methods
is reachable, simple unsupervised methods may be preferable. An illuminating
contrast can be made to the task of subword segmentation. The performance
of unsupervised subword segmentation is often sufficient for applications, while
unsupervised translation still lags behind semi-supervised MT. The optimal seg-
mentation is not easy to quantify, and may vary according to the application,
with unsupervised segmentation having desirable properties compared to the lin-
guistically accurate segmentation. Unlike in translation, the supervision signal
for segmentation is not a byproduct of human-to-human communication needs.
Early methods for unsupervised translation were based on applying decipher-

ment to construct translation tables, which produce fluent target language output
when applied to the source (Ravi and Knight, 2011; Dou and Knight, 2012, 2013).
The breakthrough was transitioning to multilingual word embeddings, trained
on monolingual corpora and mapped into a shared embedding space. This map-
ping can be learned either based on a small seed dictionary of parallel words, or in
an entirely unsupervised manner based only on the distributions. As a result of
mapping embeddings into a joint space, a crude word-for-word translation system
can be built. Using methods such as denoising autoencoding, back-translation,
and adversarial learning, a better translation system can be bootstrapped from
this crude initial system (Artetxe et al., 2018b; Lample et al., 2018a). More
recently, pretraining of the entire network on denoising or masked language mod-
eling tasks have yielded strong results (Conneau and Lample, 2019a; Song et al.,
2019; Liu et al., 2020).
Unsupervised methods were first applied to NMT, but were also found to be

applicable to PB-SMT (Lample et al., 2018b; Artetxe et al., 2018a). Also hybrid
approaches combining NMT and SMT have been proposed (Marie and Fujita,
2018; Ren et al., 2019; Artetxe et al., 2019). Some of the unsupervised MT
methods are also applicable to exploiting monolingual data in the semi-supervised
MT setting (see Section 5.3.4).
In unsupervised NMT, cross-lingual transfer requires basic units to be aligned

between languages without use of parallel data. When starting with pretrained
embeddings, longer units are typically used, as they carry more meaning than
short units, and are easier to align. In supervised NMT, a transition from early
word-based methods to current subword-based methods has occurred. In unsu-
pervised NMT, word-level methods are still in use.
18Although the rapid degradation of quality with increasingly distant language pairs
raises concerns (Kim et al., 2020).
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Zero-shot machine translation refers to an evaluation setting in which a mul-
tilingual MT system is evaluated on a language pair for which no parallel data
was used at training time (Johnson et al., 2017; Ha et al., 2017; Lu et al., 2018;
Blackwood et al., 2018; Vázquez et al., 2019; Aharoni et al., 2019; Arivazhagan
et al., 2019a). The source and target languages are present in the training data
individually, but not paired together. Zero-shot machine translation tests the
ability of the system to generalize to unseen translation pairs.

Zero-resource translation is a related concept, which starts from a multi-
lingual NMT system and extends it with an unseen translation language pair
using synthetic pseudo-parallel corpora (Firat et al., 2016b; Currey and Heafield,
2019).

Asymmetric-resource machine translation describes a semi-supervised, multi-
lingual MT learning setup in which the language pair of interest has much less
resources than the auxiliary language pairs. The goal is to maximally exploit
available resources, both parallel and monolingual, to improve the low-resource
translation. Publication IX addresses asymmetric-resource machine translation
into morphologically rich languages.
One of the main challenges in asymmetric-resource MT is the data imbalance.

In multi-task settings, the data imbalance is typically addressed by oversampling
the low-resource data. One way to choose the oversampling weights is using a
temperature-based approach to interpolate between sampling from the true dis-
tribution and sampling uniformly (Arivazhagan et al., 2019b). An alternative to
oversampling the data is to adapt the gradient scale or learning rate individu-
ally for each task (Chen et al., 2018; Kendall et al., 2018). Scheduled multi-task
learning19 enables varying the oversampling rate during training.

5.3.3 Multilingual translation

Multilingual translation is the typical way of using cross-lingual transfer in MT.
Multilingual translation can be viewed as a multi-task problem, in which each
individual language pair forms a separate task. Seq2seq neural network architec-
tures can be trained in multi-task settings, using the various parameter sharing
techniques discussed in Section 3.4.2. Such a multilingual neural machine trans-
lation (MNMT) system has a difficult task, needing to learn a complex multi-way
input-output mapping. Despite the difficulty of the task, multilingual training
often results in improved performance. The improvement is due to an induc-
tive bias: the learning signal from one language should help in learning other
languages. Like other forms of transfer learning, multilingual translation has
a regularizing effect. For general survey on multilingual translation, see Dabre
et al. (2020). Arivazhagan et al. (2019b) also thoroughly review many of the
challenges of multilingual translation.
Multilingual machine translation settings can be divided into three categories

19Presented in Section 3.4.2

123



Machine Translation

Encoder Autoregressive decoder

Source language A Source language B Decoder in A Decoder in B

Decoder out A Decoder out B

1 2

3

1 2

3

Figure 5.3. Recalling Figure 5.2, locations in an NMT system where different vocabularies can
be used. The possibility of applying different subword segmentation models for
each language is shown.

by cardinality: many-to-one, one-to-many, and many-to-many (Luong, 2016).
Many-to-one translation involves many source languages but only one target
language. The many-to-one setting can be described as a multi-domain learn-
ing problem. The target language is always the same, and the source language
can be inferred from the input. It is thus not necessary to explicitly mark the
languages involved in many-to-one translation. One-to-many translation is a
classical multi-task problem. The system learns to perform two or more tasks
on the same input. As the same input can be translated into any of the target
languages, a mechanism for selecting the desired output is needed. In both many-
to-one and one-to-many translation, English is typically selected as the language
on the side with only one language, due to resource availability. Many-to-many
translation combines the aspects of the two other settings. It is not necessary
to have training data for all pairs of source and target supported by the many-
to-many system. Missing language pairs can be evaluated in a zero-shot setting.
Universal translation is the extension of many-to-many translation to cover all
languages. The cardinality of the multilingual translation has an effect on the
difficulty of the task: cross-lingual transfer is easier in the many-to-one setting
compared to one-to-many (Arivazhagan et al., 2019b; Dabre et al., 2020).
There are several strategies for vocabulary construction in the multilingual

setting. As seen in Figure 5.3, different vocabularies can be used for source 1 ,
decoder input 2 , and decoder output 3 . Orthogonally to this choice, separate
subword segmentation models can be applied to different languages in each of
these locations. Cognate Morfessor in Publication VIII is an example of a system
using separate decoder segmentations 2 3 for the two target languages. The
most common choice is to use a joint vocabulary (Sennrich et al., 2015), a
single multilingual representation for all locations and languages.
Some work emphasizes the role of subwords shared between different languages

as anchors for a shared semantic space (Pires et al., 2019). However, there is
recent work indicating a low importance of sharing subword vocabulary across
languages (Artetxe et al., 2020a; Wu et al., 2019). These results indicate that
cross-lingual generalization occurs on a level of linguistic abstractions, even with-
out anchor subwords. Such linguistic abstractions may not be so readily found,
e.g. word embedding spaces appear to be less isomorphic than thought, espe-
cially for distant pairs (Søgaard et al., 2018; Patra et al., 2019). Joint training
can produce a more isomorphic word embedding space (Ormazabal et al., 2019).
In asymmetric-resource multilingual settings, training on a balanced data dis-
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tribution is important both for training of the translation system, and also for
training the segmentation model. If the skewed distribution of available data is
used as is, there is a risk that the units needed for the high-resource languages will
be overrepresented in the vocabulary. Artetxe et al. (2020a) find that effective
vocabulary size per language is an important predictor of performance. Balance
can be achieved by resampling the data, or in the case of subword segmentation,
by scaling the word counts of different languages.
Cross-lingual transfer is particularly useful between related languages, which

share semantic, syntactic, and morphological regularities. Zoph et al. (2016) and
Dabre et al. (2017) show that related parent languages result in better transfer.
Liu et al. (2020) find that language transfer is more effective within similar lan-
guage groups, but note that significant vocabulary sharing is not required for
effective transfer. Contrary to the above, Kocmi and Bojar (2018) find in the
case of Estonian that a larger parent (Czech) gave better results than a more
related parent (Finnish). Arivazhagan et al. (2019b) report several findings con-
cerning scaling to massively multilingual settings. As the number of tasks grows,
performance degrades for all language pairs, especially the high and medium re-
source ones. However, the zero-shot performance increases when exceeding 100
languages. In massively multilingual settings, model capacity must be scaled up
to remain sufficient. When increasing model capacity, adding depth is better
than adding width.

Scenarios for using multilingual machine translation
Multilingual machine translation can be useful for reaching various goals. The
most suitable methods depend on the scenario.

Low-resource multilingual NMT (LR-MNMT). Much of the literature focuses
on leveraging high-resource language pairs to improve the performance on low-
resource language pairs. Multilingual training improves low-resource and zero-
resource language pairs in particular.
While multilingual translation to improve a low-resource translation direction

has gained popularity in the NMT era, the technique was already proposed for PB-
SMT (Nakov and Ng, 2009). Levinboim (2017) uses the property of transitivity
to construct phrase tables for a low-resource pair though triangulation. A shallow
translation e.g. using character or byte level models might be more appropriate
than multilingual translation in the case when the source and target languages
are closely related (Tiedemann, 2009; Costa-jussà et al., 2018).
Dong et al. (2015) proposes multilingual NMT through partial parameter shar-

ing with a shared encoder and language-specific decoders. Using a simulated
low-resource condition, they argue that the shared encoder helps in translating
the low-resource pairs. Most of the work on low-resource multilingual MT uses
sequential transfer (Zoph et al., 2016; Nguyen and Chiang, 2017). Passban et al.
(2017) improves on the sequential transfer with a vocabulary adaptation step
based on a bilingual dictionary. Murthy et al. (2019) find that pre-ordering
the high-resource auxiliary parent to match the word order of the low-resource
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child language is beneficial. Neubig and Hu (2018) and Gheini and May (2019)
rapidly adapt to a new low-resource language, with transfer from a massively
multilingual parent, trained ahead-of-time. Lakew et al. (2020) experiment on
five low-resource African languages, finding parallel transfer to outperform single-
pair, sequential transfer, and back-translation systems. Gu et al. (2018b) apply
model-agnostic meta-learning (MAML) to low-resource NMT.
There is also work focusing on synthetic data and exploiting of monolingual

data (Toral et al., 2019; Dabre et al., 2019; Valeev et al., 2019, and see Sec-
tion 5.3.4).

Universal machine translation. The number of language-pair specific systems
needed for universal translation between a set of languages scales with the square
of the number of languages. For a large set of languages this number of systems
quickly becomes infeasible, making multilingual translation appealing.
Supporting a large number of languages is easier in many-to-one translation,

as the encoder can learn to recognize the source language without any language
identifier (Lee et al., 2017). Using language-specific encoders or decoders is not
suitable for universal translation, as the number of parameters scales linearly
with a large number of additional parameters per language (Dong et al., 2015;
Firat et al., 2016a). Full parameter sharing with a target language token is more
amenable to scaling to massively multilingual settings (Johnson et al., 2017; Aha-
roni et al., 2019). The capacity of the model is still a limiting factor. In a mas-
sively multilingual model, interference from the other languages can degrade the
performance, especially for high-resource languages (Arivazhagan et al., 2019b).
This degradation is caused by limited model capacity being shared between too
many tasks. Bapna and Firat (2019) take a step back from full parameter shar-
ing, by adding small task-specific adaptor layers to a pretrained network, which
only slightly increases the number of parameters for each added language. Meth-
ods for meta-learning which parameters to share also have a strong potential to
scale (Platanios et al., 2018).
Scaling issues also affect the vocabulary of universal machine translation models.

Different script systems and orthographic conventions pose challenges for univer-
sal translation, which requires representing the scripts of all languages equally
well. Despite some lexical overlap between languages, word level vocabularies
grow too rapidly, making subword or character level models more suitable. Ha
et al. (2016) first use disjoint vocabularies using a source language coding at-
tached to subwords, but later switch to a better scaling source language input
factor (Ha et al., 2017).

Interlingual meaning representation. The distinction between work focusing
on universal translation and interlingual meaning representation is fuzzy, as both
goals are approached using massively multilingual models. Universal translation
focuses on scaling the number of translation directions, while work on interlingual
meaning representation focuses on the properties of the representations. The lat-
ter can use a smaller number of language pairs, but will include distant languages
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with diverse semantics, as this can aid in learning a more abstract interlingual
intermediate representation.
One approach attempts to construct the interlingual representation on the level

of words. McCann et al. (2017) use the word embeddings from a single-pair NMT
system as pretrained embeddings for downstream NLP. Gu et al. (2018a) propose
a universal lexical representation, intended to embed the words of all languages
in a single common space. The method is English-centric, assuming that words
of all languages can be mapped to English words. However, languages vary in the
amount of information carried by each word. Assigning the same size of represen-
tation for both the English article “a” and the Finnish verb “istahtaisinkohan”
(Should I perhaps sit down for a moment?) seems unreasonable. To account
for varying granularity, a truly universal representation must represent concepts
rather than (e.g. whitespace delimited) words.
Another line of work explores fixed-size sentence representations found using

MT. The FoTran project (Tiedemann et al., 2018) studies representations of this
type. Schwenk and Douze (2017) and Espana-Bonet et al. (2017) use the bottle-
neck of a recurrent NMT architecture without attention as an advantage. The
bottleneck vector can be used as an interlingual fixed-size sentence representation.
Larger fixed-size representations can be constructed by inserting a cross-lingually
shared attention bridge component between encoder and decoder (Lin et al., 2017;
Vázquez et al., 2019; Lu et al., 2018).
The encoder of an attentional NMT system can be used to produce a variable-

length sentence representation. If the encoder is not told the target language, it
must produce a representation that works well for all target languages. Param-
eter sharing does not yet guarantee that the model learns a shared interlingual
representation. If the target language is known to the encoder, it can encode
the same source sentence into different target-language specific subspaces of the
intermediate representation (Platanios et al., 2018). Lample et al. (2018a) force
interlingual latent representations using an adversarial regularization term. The
model tries to fool a discriminator which tries to identify the source language. The
intermediate representations can also be regularized so that sentences with similar
meaning in different languages are encoded into similar representations (Escolano
et al., 2019a,b).
The zero-shot translation methods mentioned previously in Section 5.3.2, can

also be placed in the category of LR-MNMT. However, as zero-shot quality ben-
efits from language-invariant representations (Arivazhagan et al., 2019a), they
belong equally well in the quest for interlingual representations.
Siddhant et al. (2020) evaluate the performance of sentence representations

from massively multilingual NMT when used as pretrained features for down-
stream tasks. Kudugunta et al. (2019) make use of singular value canonical corre-
lation analysis (SVCCA) (Raghu et al., 2017) to analyze representations from a
massively multilingual NMT system. They find that representations of different
languages cluster based on linguistic similarity. They also note a language-pair
dependency in the representations: the encoder representations are dependent on
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the target language and decoder representations on the source language. These
results indicate that an interlingual meaning representation has not yet been
reached.

5.3.4 Exploiting monolingual data

While parallel data is the primary type of data used for training MTmodels, meth-
ods for effectively exploiting the more abundant monolingual data can greatly in-
crease the number of available examples to learn from. Use of monolingual data
can be viewed as semi-supervised learning: both labeled (parallel) and unla-
beled (monolingual) data are used. There are two main approaches to exploiting
monolingual data in MT: transfer learning and dataset augmentation.

Augmenting the data set with synthetic data
The easiest way to improve generalization is to train on more data. As natural
training data is limited, a practical way to acquire more is to generate additional
synthetic data for augmentation. The main benefit of dataset augmentation
is as regularization to prevent overfitting to non-robust properties of small data.
Synthetic data can be self-generated by the model being trained, or generated

by a related model. In machine translation, the best known example of syn-
thetic data is back-translation (BT) (Sennrich et al., 2016). The process of
back-translation begins with the training of a preliminary MT model in the re-
verse direction, from target to source. The target language monolingual data
is translated using this model, producing a synthetic, pseudo-parallel data set
with the potentially noisy MT output on the source side. Because the quality
of the translation system used for the BT affects the noisiness of the synthetic
data, the procedure can be improved by iterating with alternating translation
direction (Lample et al., 2018b). Edunov et al. (2018) propose adding noise to
the BT output. The benefit of noisy BT is further analyzed by Graça et al.
(2019), who recommend turning off label smoothing in the reverse model when
combined with sampling decoding. As a related strategy, Karakanta et al. (2018)
convert parallel data from a high-resource language pair into synthetic data for
a related low-resource pair using transliteration. Zhang and Zong (2016) exploit
monolingual data through self-learning by “forward-translating” the monolingual
source data to create synthetic parallel data. Self-learning has the benefit of not
needing to train a second model, but the use of noisy synthetic data on the target
side can be problematic.
Simple ways to generate synthetic data without a model include using a single

dummy token on the source side (Sennrich et al., 2016), and copying the target to
source (Currey et al., 2017). The latter can be interpreted as a target-side auto-
encoder task without noise. The largest factor in determining the effectiveness of
using synthetic data is how much the synthetic data deviates from the true data
distribution. To avoid confusing the encoder with synthetic data from a different
distribution than the natural data, it may be beneficial to use a special tag to
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identify the synthetic data (Caswell et al., 2019).
Back-translation is based on the idea that translation should be invertible: if

s translates into t, then t should translate back into s. Dual learning (He
et al., 2016a; Cheng et al., 2016; Tu et al., 2017) takes this idea further by jointly
training the forward and backward translation models, in a form of continuous
BT.

Transfer learning from monolingual data
When using synthetic data, the aim is to produce data from a distribution that
is as close as possible to the distribution of the main task. Transfer learning
instead exploits different but related auxiliary tasks. Both approaches can make
use of noise: if noise is added to parallel data it is called data augmentation,
while denoising monolingual data is one of the loss functions used for transfer
learning. Belinkov and Bisk (2017) apply both natural and synthetic noises for
NMT evaluation, finding that standard character-based NMT models are not
robust to these types of noise. Noise-based training methods have the benefit of
making the model more robust to noisy inputs at decoding time.
Back-translation is a slow method due to the additional training of the reverse

translation model. Transfer is a computationally cheaper way to exploit mono-
lingual data as an auxiliary task.
The transfer from monolingual data is often sequential, in the form of mono-

lingual pretraining of some of the parameters of the final translation model.
The loss for the monolingual training can be different from the one used during
NMT training.

The extent of the parameter transfer can vary. The smallest set of parameters
is transferred when pretraining word (or subword) embeddings for the encoder,
decoder, or both. Source and target embeddings can be pretrained on mono-
lingual data from the source and target languages, respectively (Di Gangi and
Federico, 2017). Alternatively, joint cross-lingual embeddings can be trained on
both (Artetxe et al., 2018b). As the embeddings are trained for e.g. a generic
contextual prediction task, this is a form of transfer learning. The pretrained
embeddings can either be frozen or fine-tuned, by respectively omitting or
including them as trainable parameters during the NMT training. Thompson
et al. (2018) investigate the effects of freezing various subnetwork parameters—
including embeddings—on domain adaptation. Deep neural networks learn a
hierarchy of features ranging from simple generic ones in earlier layers to more
complex ones in later layers. This allows freezing parameters that are deemed
most likely to be useful for other tasks. In the one-to-many setting, where the
source language is shared between the tasks, freezing the parameters for the ear-
liest layers of the network may be useful. This is particularly true for the source
embeddings, which are the very first parameters to be applied.
The parameters of a subnetwork of the translation model can be transferred:

from a source language model to the encoder and from a target language model to
the decoder. Ramachandran et al. (2017) pretrain the encoder and decoder with
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source and target language modeling tasks, respectively. To prevent overfitting,
they use task-mix fine-tuning: the translation and language modeling objectives
are trained jointly (with equally weighted tasks). The work of Domhan and
Hieber (2017) falls between transferring only embeddings and the whole decoder.
They modify the NMT architecture by adding an auxiliary language model loss
in the internal layers of the decoder, before attending to the source. This loss
allows the first layers of the decoder to be trained on monolingual data. The full
network can receive transfer from a sequence-to-sequence auxiliary task (Liu
et al., 2020).
It is also possible to pretrain a separate language model for the target language,

and combine its predictions with the ones of the translation model during de-
coding through language model fusion. This approach is used in statistical
machine translation, where one or more target language models are combined
with a statistical translation model. It can also be applied in neural machine
translation, through shallow fusion, deep fusion (Gulcehre et al., 2015), cold fu-
sion (Sriram et al., 2017), or PostNorm (Stahlberg et al., 2018). Skorokhodov
et al. (2018) use both pretraining (on both source and target side) and gated shal-
low fusion (on the target side) to transfer knowledge from pretrained language
models. Some of the experiments are performed on low-resource data going down
to 10k sentence pairs. An alternative way of using a language model is to per-
form a separate rescoring step on an n-best list or lattice. However, as a neural
machine translation system is already a conditional language model, it may be
preferable to avoid a separate language model and instead find a way to train the
parameters of the NMT system using the monolingual data.

Loss functions for monolingual transfer are typically some form of language
modeling loss. Some variants include the traditional next token prediction (Gul-
cehre et al., 2015), a masked language model (Song et al., 2019), a cross-lingual
language model loss (Conneau and Lample, 2019b), or an autoencoder loss (Luong
et al., 2015a). In spoken language translation, encoders are pretrained using auto-
matic speech recognition auxiliary tasks, and decoders using textual MT (Bérard
et al., 2018; Stoian et al., 2020).
While a unidirectional language model predicts the next token based on pre-

ceding context, a masked language model instead uses bidirectional context to
fill in masked parts of the sentence, in a kind of cloze task. Devlin et al. (2019)
mask out individual tokens. Joshi et al. (2020) and Song et al. (2019) mask out
continuous spans of tokens, but replace the span with an equal number of mask
tokens to retain the alignment between input and output. Lewis et al. (2019)
replace arbitrary length spans of text (including zero length) with a single mask
token, so that the model must predict how many tokens to produce in a par-
ticular context. As the input and output no longer have the same length, an
encoder-decoder architecture is used. Song et al. (2019) mask the input tokens
on the decoder side if they were unmasked in the encoder input, which forces
the decoder to condition on the encoder instead of relying on decoder language
modeling.
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Figure 5.4. Alternative ways to set up an autoencoder auxiliary loss for NMT training.

The denoising sequence autoencoder (DSAE) frames language modeling as
a denoising task. Target language text, corrupted by a noise model, is fed in as
a pseudo-source. Different noise models can be used, e.g. applying reordering,
deletions, or substitutions to the input tokens. The desired reconstruction output
is the original noise-free target language text.
An autoencoder (Bourlard and Kamp, 1988) is a neural network that is trained

to copy its input to its output. It applies an encoder mapping from input to a
hidden representation, i.e. code h = f (x), and decoder mapping from code to a
reconstruction of the input x̂= g(h). To force the autoencoder to extract patterns
in the data instead of finding the trivial identity function x̂= 1(1(x)), the capacity
of the code must be restricted somehow. In the undercomplete autoencoder, the
restriction is in the form of a bottleneck layer with small dimension. For example,
in the original sequence autoencoder (Dai and Le, 2015), the entire sequence is
compressed into a single vector.
In a modern sequence-to-sequence architecture, the attention mechanism en-

sures a very large bandwidth between encoder and decoder. When used as an
autoencoder, the network is thus highly overcomplete. In this case, the capacity
of the code has to be controlled by regularization. Robustness to noise is used as
the regularizer in the denoising autoencoder (Vincent et al., 2008). Instead
of feeding in the clean example x, a corrupted copy of the input is sampled from
a noise model C(x̃ |x). The denoising autoencoder must then learn to reverse the
corruption to reconstruct the clean example. Masked language modeling can be
seen as a special case of DSAE, where the noise model stochastically replaces
some tokens with the mask symbol. Hill et al. (2016) use a DSAE20 with an
NMT-like architecture to learn fixed size sentence representations.

Comparing autoencoder setups for NMT. There are multiple ways of adding
the autoencoder loss to the NMT training, three of which are shown in Figure 5.4.
The first setup (5.4a) treats the autoencoder task as if it was another language

pair for multilingual training, and involves no changes to the architecture. When
using this type of autoencoder task on target language sentences, the task cardi-
nality changes into a many-to-one problem: the model must simultaneously learn
20Hill et al. (2016) use the term sequential denoising autoencoder (SDAE).
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a mapping from source to target and from corrupted target to clean target. In
both tasks the target language is the same. As the decoder is a conditional lan-
guage model, this task strengthens the modeling of the target language. When
using source language sentences, the model must simultaneously learn a one-to-
many mapping from source to target and from corrupted source to clean source.
Thus the decoder must learn to output both languages. The task may strengthen
the encoder, by increasing its robustness to noise, and by preventing the encod-
ing from becoming too specific to the target language. Luong et al. (2015a) and
Luong (2016) experiment with various auxiliary tasks, including this type of auto-
encoder setup. They see a benefit of using the autoencoder task, as long as it has
a low enough weight in the task mix.

Dual learning (5.4b) is a different way of adding an autoencoder loss. In dual
learning the autoencoder is built from source-to-target and target-to-source trans-
lation models. He et al. (2016a) combine source-to-target and target-to-source
translations in a closed loop which can be trained jointly, using two additional
language modeling tasks (for source and target respectively), and reinforcement
learning with policy gradient. Cheng et al. (2016) use a dual learning setup to
exploit monolingual corpora in both source and target languages. Their loss con-
sists of four parts: translation likelihoods in both directions, source autoencoder,
and target autoencoder.
Tu et al. (2017) simplify the dual learning setup into an encoder–decoder–

reconstructor network (5.4c). The reconstructor attends to the final hidden
states of the decoder. As the reconstructor does not need a separate encoder,
this removes the need for one subnetwork. One downside is that the training
does not result in a target-to-source translation model. The aim of the work is to
improve adequacy by penalizing undertranslation: the reconstructor is not able
to generate any parts of the sentence omitted by the decoder.

5.4 Evaluation of machine translation

The translations in this thesis are evaluated using both human evaluation and
several automatic metrics. The primary methods for human evaluation of trans-
lations are relative ranking, in which the evaluator places one or more translation
hypotheses in order of preference, and direct assessment, in which each hypoth-
esis is individually scored. Direct assessment can use a single quality scale, or
decompose the assessment e.g. into fluency and adequacy. An alternative hu-
man evaluation is measuring the time required to post-edit the MT output. The
WMT evaluation campaigns have used relative ranking and single scale direct
assessment.
Human evaluation comes close to measuring the quality of translation in prac-

tice, with the remaining discrepancy caused e.g. by limited context during eval-
uation, and evaluator proficiency. Automatic metrics approximate translation
quality imperfectly, but are nevertheless very useful due to much higher speed

132



Machine Translation

and lower cost. Particularly during tuning of MT systems, frequent repeated
evaluation is necessary.
Multiple automatic evaluation metrics are used to evaluate the work in this

thesis. The most prominent is Bilingual Evaluation Understudy (bleu) (Papineni
et al., 2002). bleu is computed as the geometric mean of precisions of word n-
grams, with n ranging from 1 to 4, and each n-gram precision weighted by its
own weight wn.21 To compensate for only considering precision but not recall,
the score is modified by a brevity penalty to discourage too short hypotheses

bleu=

brevity penalty︷ ︸︸ ︷
min

(
1,

output-length
reference-length

)(
4∏

n=1
wnPrecisionn

) 1
4

. (5.3)

bleu assigns to each hypothesis a score between 0 and 1, typically expressed
in percentage points, with higher scores being better. bleu has been found to
correlate well with human judgment for morphologically simple languages, when
using a large enough number of references. Despite its inadequacies, bleu is the
standard evaluation metric in this field, and for that reason all the translation
systems in this thesis are evaluated using it.
Other word-based metrics used in this thesis include meteor and ter. me-

teor (Banerjee and Lavie, 2005; Lavie and Agarwal, 2007; Denkowski and Lavie,
2011) computes an F-score from aligned stems of the reference and hypothesis,
allowing for paraphrasing. To support these advanced features, meteor requires
knowledge-based resources for the target language. Translation Edit Rate (ter)
(Snover et al., 2006) uses a shift operation that moves a contiguous sequence of
words to another location, as well as a greedy search algorithm to find the mini-
mum distance. ter does not require language resources, but the search algorithm
is heavy.
A targeted evaluation, focusing on the ability of a model to translate rare and

unseen words, is achieved using word unigram F1-score (Sennrich et al., 2015),
restricted to this class of words.
Rich morphology of the target language makes evaluation difficult. Word-level

metrics score morphologically rich target languages lower overall. Analytical lan-
guages contain many non-inflecting high-frequency words (prepositions, articles),
that give a larger number and longer n-gram matches. MRLs use complex word
forms that are difficult to analyze and generate, while even a small change causes
the entire word to be treated as an error. bleu, ter, and many other word-based
methods assume that a single word (or n-gram) is either correct or incorrect, noth-
ing in between. This is problematic for inflected or derived words (e.g. “translate”
and “translated” are considered two different words) as well as compound words
(e.g. “salt-and-pepper” vs. “salt and pepper”). This is a minor issue for English,
but it makes the evaluation unreliable for many other languages.
Character n-gram F-score (chrF) (Popović, 2015, 2016) is a simple but well

performing metric, which, due to operating on the character level, gives partial
21mteval-v13a.pl uses uniform weighting wn = 1∀ n.
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newstest 2015 newstest 2017

Method Year Pub. |D| chrF1" bleu " chrF1" bleu "

PB-SMT word baseline 2015 VII 2.1M – 10.0 – –
PB-SMT tuned seg. 2015 VII 2.1M – 11.6 – –
PB-SMT word baseline 2016 VI 1.8M – 10.48 – –
PB-SMT ORM 2016 VI 1.8M – 11.21 – –
NMT Morfessor FlatCat 2017 X 1.8M – – 53.98 17.15

PB-SMT Standard Moses baseline 2017 – 2.4M – – 55.93 15.9
NMT target-MTL 2017 X 2.4M – – 57.57 20.31

NMT monoling. Morfessor BL 2018 VIII 2.2M 57.94 20.87 61.33 23.11
NMT BPE baseline 2018 VIII 2.2M (1M) 58.59 21.09 62.00 23.49
NMT Cognate Morfessor 2018 VIII 2.2M (1M) 58.48 21.08 62.17 23.45

Table 5.2. Machine translation Character-F1 (chrF1) and bleu results for English!Finnish.
Methods in boldface are contributions of this thesis. All methods are trained by the
present author, except for the 2017 baseline, HY-SMT (A standard Moses phrase-
based SMT system with BPE, back-translated news, CC-LM) by Östling et al.
(2017). " indicates that higher scores are better. Parallel data sizes |D| do not
include back-translation. For multilingual models, size of auxiliary eng–est data
in parenthesis.

credit for hypothesis words that deviate from the correct form only by a few
characters. It uses the F-score computed from the arithmetic mean of character
n-grams with n ranging from 1 to 6.

5.5 Contributions to machine translation

In the following section, the contributions of this thesis with application to ma-
chine translation are discussed. First, the LeBLEU evaluation metric is pre-
sented, followed by results pertaining to use of subword segmentation or morpho-
logy, with general contributions to NMT at the end. Only machine translation
evaluations are discussed here; for intrinsic evaluations of segmentation and de-
tails on the segmentation methods, see Section 4.4.

5.5.1 LeBLEU for evaluation of MT

Publication XII proposes LeBLEU22 as an evaluation metric for morphologically
rich target languages. LeBLEU extends bleu score to consider fuzzy matches
between word n-grams, based on letter edit distance from the Levenshtein (1966)
algorithm.23 A threshold is set for the maximal letter edit distance between
hypothesis and reference n-grams, both to avoid giving credit for too dissimilar
matches, and also to allow pruning to speed up the necessary edit distance com-
22Short for Levenshtein-bleu or letter edit bleu. Software available at https://github.
com/Waino/LeBLEU.
23See Section 4.4.4 for the Levenshtein edit distance.
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Figure 5.5. BLEU (left) and chrF1(right) results of varying the subword vocabulary in Publi-
cation IX. Multilingual models, with SRC+HRL+LRL autoencoder and full noise
model, except for BPE which are multilingual models without autoencoder or
noise. Results on English!Estonian newsdev2018.

putations between all pairs of n-grams. (RQ2.1) The results of Publication XII
on WMT data sets show that fuzzy n-gram matching improves correlations to
human evaluation, especially for highly compounding languages. LeBLEU has
been used particularly for Indian languages (Kunchukuttan and Bhattacharyya,
2016; Murthy et al., 2019).
To avoid result tables growing too large, the number of evaluation metrics per

paper had to be limited. chrF is a simple, fast metric, and has gained some pop-
ularity. Looking only at translation directions from English, chrF outperforms
LeBLEU for both system- and segment-level evaluation for English!Finnish,
English!Czech, English!Russian and the average of all WMT15 metrics task
languages (Stanojević et al., 2015). In 2019, chrF was still at the top, not signifi-
cantly outperformed by any other metric for English!Finnish, English!Gujarati,
English!Kazakh, and English!Latvian (Ma et al., 2019). In this thesis, chrF
was selected to complement bleu as the primary tuning and evaluation metrics.

5.5.2 Overview of Morfessor methods in MT

Table 5.2 summarizes the automatic evaluation results for English!Finnish, which
is the most frequently used translation direction in this thesis. The trend of im-
proving performance over time is mainly due to general improvements in MT
systems and available training data, and not only the contributions of this thesis.
The quality increase from switching to the neural MT paradigm is notable. The
reversion of performance in Publication VI is due to an error in LM training (for
details, see the Publication). The problem affects all the evaluated systems and
lowers the overall scores. However, it does not affect the increase in bleu from
the use of Omorfi-restricted Morfessor (ORM), verified using bleu of a subset of
the test set with all source sentences containing numbers removed.
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Of the subword segmentation methods already presented in Section 4.4, some
have been successfully applied to machine translation by other researchers. A
lightly modified version of Morfessor FlatCat24 was shown to outperform BPE
for neural translation into English from Arabic, Czech, German, Italian, and
Turkish (Ataman et al., 2017; Ataman and Federico, 2018); and Kazakh (Toral
et al., 2019). For non-English target languages, Banerjee and Bhattacharyya
(2018) showed improved results translating from English to Hindi and Bengali.
In Publication IX, Morfessor EM+Prune25 was used to improve translation

into low-resource morphologically complex languages. (RQ1.2) Figure 5.5 shows
that Morfessor EM+Prune is superior to both SentencePiece and BPE in this
asymmetrical-resource translation setting.

(RQ1.2) A small experiment was performed to analyze how subword segmen-
tation affects the distribution of basic units. Figures 5.6 to 5.10 visualize the
distributions of subwords from BPE, Morfessor EM+Prune and Morfessor Flat-
Cat, comparing against the distributions of words and character n-grams. All
five plots are computed from a 10M token subset of the Finnish Europarl corpus.
Figure 5.6 plots the frequency of basic units against the rank of the unit in

a list sorted by frequency. The distributions of the subwords lie between those
of words and short character n-grams, but the curves are more “boxy”, i.e. the
subword segmentations distribute the probability mass more uniformly over the
entire lexicon. The long tail of rare items is truncated. To measure how much the
distributions differ from the uniform distribution, Figure 5.7 shows the entropy
of the distribution normalized by the logarithm of the size of the lexicon

−
|L|∑
i=1

(
P(mi) · logP(mi)

)
log|L| . (5.4)

Due to the normalization, the uniform distribution always receives the maximal
score of 1, regardless of lexicon size. The closer the score is to 1, the closer the
distribution is to the uniform distribution. A uniform distribution is desirable,
because learners will typically overpredict the majority groups when trained on
an imbalanced distribution (Krawczyk, 2016; Johnson and Khoshgoftaar, 2019).
Steedman (2008) states that

“ [...] the machine learning techniques that we rely on are actually very bad at
inducing systems for which the crucial information is in rare events [...] ”

For the proportion of rare basic units occurring less than 10 times in the data
set, shown by the dashed lines in Figure 5.8, optimal values are found for lexicons
between 5k (BPE) and 20k (Morfessor EM+Prune). All subword segmentations
are better at reducing rare units than the character n-grams. The Morfessor
methods are better at alleviating sparsity than BPE.
24See Section 4.4.1 for Morfessor FlatCat.
25See Section 4.4.2 for Morfessor EM+Prune.
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Figure 5.6. (On the left). Illustration
of Zipf’s law. Frequencies of
units computed from a 10M to-
ken subset of the Finnish Eu-
roparl corpus. Character n-
gram counts scaled down by n,
to account for overlap. BPE
and Morfessors are tuned for a
lexicon size of 5k subwords.

Figure 5.7. Divergence of subword frequen-
cies from the uniform distribu-
tion, measured as entropy di-
vided by log|L|. Larger values
are closer to uniform.

Figure 5.8. Proportion of the lexicon con-
sisting of rare units, defined us-
ing three thresholds at 5, 10,
and 20 occurrences.

Figure 5.9. Average length of segmented
sentences.

Figure 5.10. Proportion of unsegmented
word tokens.
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As a downside of small lexicons, Figure 5.9 shows that average sequence lengths
grow rapidly when lexicons become small. For large lexicons, a substantial pro-
portion of word tokens are not segmented at all, as shown in Figure 5.10. This
means that subword models with large lexicons act essentially as word models
with a fallback to subwords for some inputs.
To summarize, the distributions of BPE, Morfessor EM+Prune and Morfes-

sor FlatCat subwords are somewhat similar when contrasted against words and
character n-grams. All three methods produce segmentations that are closer to
uniform than character n-grams. Smaller lexicon sizes bring the distributions
closer to uniform, and decrease the proportion of rare items, but at the cost of
producing very long sequences. BPE produces subword distributions that are
closer to uniform, evidenced by slightly higher entropies. However, considering
that the Morfessor methods outperform BPE in translation quality, it appears
that other factors, such as the proportion of rare items or consistency of segmen-
tation are more important than how close the distribution is to uniform.

5.5.3 Tuning the subword segmentation

Publication VII increases cross-lingual consistency between source and tar-
get representations via tuning the subword segmentation towards symmetric
granularity. This is a form of very light cross-lingual transfer applied to
segmentation. Only the morphologically rich Finnish target side is segmented,
using Morfessor FlatCat.26 The tuning aims for an equal number of Finnish
subwords as there are English source words, by minimizing the sentence level
absolute difference in token counts

α∗ = argmin
α

∑
(s,t)∈D

∣∣∣|s|− |M(t;α)|
∣∣∣, (5.5)

where |·| gives the number of tokens in the sentence, and M(t;α) is the segmen-
tation with a particular corpus likelihood weight hyper-parameter α. Balancing
the token counts is a rough heuristic, and there is no guarantee that it increases
the number of one-to-one alignments. (RQ1.4) Still, the tuned segmentation of
Publication VII improves +1.1 bleu over the word baseline in SMT.
Using a linguistically accurate morphological segmentation in PB-SMT is not

an optimal choice. In general, oversegmentation seems to be a larger problem for
statistical NLP applications than undersegmentation (Virpioja et al., 2011b). In
the case of SMT, linguistic morphs may provide too high granularity compared
to the second language, and deteriorate alignment (Habash and Sadat, 2006;
Chung and Gildea, 2009; Clifton and Sarkar, 2011). Moreover, longer sequences
of units are needed in the language model and the translation phrases to cover
the same span of text. In NMT, oversegmentation is not as detrimental, but
low-count events are poorly modeled. Subword lexicon size has been considered
an important parameter to tune (Sennrich and Zhang, 2019; Ding et al., 2019;
26See Section 4.4.1 for Morfessor FlatCat.
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Salesky et al., 2020). Ding et al. (2019) tune BPE segmentation granularity for
English↔{Arabic, Czech, German, and French} NMT with datasets of approxi-
mately 200k sentence pairs, finding that optimal vocabulary sizes for Transformer
architectures are very small, between character level and 4k subwords. For LSTM
architectures, no single optimal granularity is found. Salesky et al. (2020) find
optimal BPE vocabulary sizes between 20k and 40k subwords for GRU-based
English!{Czech, German, and Turkish} translation with training datasets rang-
ing between 105k and 208k sentence pairs. For English!Chinese with 227k
training pairs the optimal size is 10k subwords.

(RQ1.1) The optimal subword vocabularies were 64k in Publication VIII, 50k
in Publication XI, and 16k in Publication IX. In higher-resource settings the
performance is not as sensitive to vocabulary size, and the optimal subword vo-
cabulary size is larger. A preference for larger vocabularies is caused by transfer
at the level of basic unit embeddings, e.g. when optimizing segmentations for
cross-lingual consistency. Very small units do not carry meaning, making longer
units more suited for transfer at the embedding level. Use of shallow networks
also leads to a preference for larger vocabularies, as less computation is available
for encoding in context. In low-resource settings and related target languages,
optimal vocabularies are smaller. Introducing subword regularization in Publica-
tion IX lessens the impact of the subword vocabulary size, as shown in Figure 5.5
on page 135. Preliminary experiments of low-resource NMT without subword
regularization suggested a more substantial effect for the lexicon size.

5.5.4 Restricted segmentation

Oversegmentation is detrimental for SMT, due to the hard limits on the spans of
context considered. As a consequence, SMT using unsupervised morphological
segmentation with e.g. Morfessor CatMAP has typically lead to improvements in
OOV rate, but not overall quality (e.g. Virpioja et al., 2007). Omorfi-restricted
Morfessor27 improves language-internal consistency by combining the strengths
of rule-based and data-driven segmentation. (RQ1.2) As shown in Publication
VI and Table 5.2, using Omorfi-restricted Morfessor in SMT does improve over
both the word baseline and the Omorfi segmentation. As the method results
in a large lexicon and is unable to address rare or OOV stems, it is not well
suited for use in NMT. For relevance in the NMT era, potential future work
could extend ORM to allow two types of deviation from the linguistic segmen-
tation: (i) the already implemented forming of supermorphs from two or more
linguistic morphs, and (ii) splitting a rare morph into submorphs, in such a way
that none of the submorphs are allowed to cross a linguistic morph boundary.
For example, given the linguistic segmentation “München++ i++stä++kin” (also
from Munich), “Mün++ch++en++ istäkin” would be an allowed segmentation, but
“Münchenis++täk++ in” would not.
27See Section 4.4.3 for Omorfi-restricted Morfessor.
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newsdev 2018 newstest 2018

Method Year Pub. |D| chrF1" bleu " chrF1" bleu "

NMT BPE baseline 2018 VIII 1M (2.2M) 56.52 17.93 – –
NMT Cognate Morfessor 2018 VIII 1M (2.2M) 57.05 18.40 – 20.7

NMT Standard back-translation 2020 IX 18k (–) – – 36.12 5.51
NMT Scheduled MTL 2020 IX 18k (19.4M) – – 56.45 18.05

Table 5.3. Machine translation Character-F1 (chrF1) and bleu results for English!Estonian.
Methods in boldface are contributions of this thesis. The standard back-translation
baseline uses the same segmentation method (Morfessor EM+Prune) as the method
using scheduled MTL, but without subword regularization. The baseline does not
use multilingual training or DSAE, but uses back-translation. " indicates that
higher scores are better. Parallel data sizes |D| do not include back-translation.
The size of the auxiliary eng–fin data is shown in parenthesis, after the size of the
eng–est data.

5.5.5 Boundary correction

One benefit of segmented translation is the ability to generate new compounds
and inflections that were not seen in the training data. This ability is important
for translation into languages with productive morphology. However, the produc-
tive generation ability can also lead to errors, e.g when an English word frequently
aligned to a Finnish compound modifier is translated using such a morph, even
though there is no compound head to modify. The “dangling” morph boundary
marker will then cause the space to be omitted, forming an incorrect compound
with whatever word happens to follow. For example, the Finnish pronoun “moni”
(many) is also a frequent prefix, as in “monitoimi-” (multi-purpose) or “monikult-
tuurinen” (multicultural). Confusing the two may result in an erroneous novel
compound in “*moniliberaalien keskuudessa” (among the *multiliberals). To cor-
rect the error, a space should be introduced between “moni” and “liberaalien”,
leading to a correct translation (many among the liberals). In the opposite type
of error, compounds may be translated as separate words, or hyphenated com-
pounds translated with the hyphen omitted.
Publication VI proposes a neural boundary predictor for correcting this type

of error. While the predictor works reliably for the noisily boundary marked but
otherwise correct Finnish text it was trained on, manual inspection shows that
the performance is erratic for disfluent translation output.
The mispredicted boundary markers are no longer a problem for NMT sys-

tems, due to their strong target language modeling ability. As mentioned in
Section 5.3.2, PB-SMT has been found to be competitive in some low-resource set-
tings. Perhaps a strong, modern tagger such as LaserTagger (Malmi et al., 2019)
could be effective in boundary correction for low-resource PB-SMT. LaserTag-
ger is able to perform editing tasks, such as sentence fusion and splitting, by
tagging each token with one of keep, delete or adding one of a small set of
predetermined joining phrases before the token.

140



Machine Translation

5.5.6 Cross-lingual transfer using Cognate Morfessor

The aim of Cognate Morfessor28 is to increase target–target consistency in the
asymmetric-resource multilingual translation task. Cross-lingually consistent seg-
mentation finds subwords with similar surface forms and meanings across lan-
guages, improving cross-lingual transfer on the level of subword representations.
If segmentation decisions are consistent between the high- and low-resource tar-
get languages, better representations for the units in the low-resource language
can be learned using the contexts of their correspondents in the high-resource
language.

(RQ1.4) The experiment in Publication VIII was multilingual, with two medium-
resource language pairs: English!Finnish with 2.2M sentence pairs of natural
data, and English!Estonian with 1M sentence pairs. Table 5.2 shows that for
the higher-resourced eng!fin pair, multilingual training with Cognate Morfes-
sor improves translation quality over monolingual Morfessor Baseline, but results
are inconsistent when comparing against BPE-segmented multilingual training.
Table 5.3 shows that for the lower-resourced eng!est the cross-lingual segmen-
tation is clearly beneficial, yielding a +0.47 bleu and +0.53 chrF1 increase
compared to BPE. One downside is that, due to the model structure, Cognate
Morfessor is currently not applicable to more than two target languages.

5.5.7 Target side multi-task learning

In a hybrid word–character decoder (Luong and Manning, 2016), the word level
decoder outputs frequent words as they are, and outputs 〈unk〉 for rare words,
while storing the decoder hidden state at that timestep. A second character-
level decoder expands the 〈unk〉s into surface forms, conditioned on the stored
state. As a downside, the morphological realization of the rare word is not yet
decided during the word-level decoding, which can be problematic for long-range
morphological dependencies, such as agreement.
Publication X implicitly incorporates morphological information into NMT

through target-side multi-task learning (MTL). Labels produced by the FinnPos
morphological analyzer (Silfverberg et al., 2016) provide additional supervision
signals that can help the model learn target-side grammar and morphology. Mor-
phological analyzers and parsers typically produce labels on the level of words.
Target-side MTL requires the label sequence to be of the same length and syn-
chronous with the surface sequence. This is problematic for subword decoders,
as labels need to be repeated and/or distributed over the subwords. The hy-
brid word–character decoder makes it simple to use word-level labels, while still
supporting open vocabulary translation and avoiding unwieldy large model vo-
cabularies.
The degree of parameter sharing in target-side MTL is very high. In addition to

sharing the encoder, all parts of the word-level decoder except the final prediction
28See Section 4.4.4 for Cognate Morfessor.
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Encoder Decoder

s1 s2 s3 s41 t1 t2 t3 2

Target-side MTL

t1 t2 t3 t4

a1 a2 a3 a4Target-side labels
3

Encoder Decoder

s1 s2 s3 s41 a1 a2 a3

t1 t2 t3
2

Target-side factors

a1 a2 a3 a4

t1 t2 t3 t4
3
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s1 s2 s3 s41 t1 〈u〉 t3 2

Target-side MTL + hybrid decoder

t1 〈u〉 t3 t4

a1 a2 a3 a4
3

Char dec

Encoder Main dec

Aux dec

s1 s2 s3 s41 t1 t2 t3 2

Source-side MTL

t1 t2 t3 t4 3
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as1 as2 as3 as4 3Source-side labels

Figure 5.11. Ways of using auxiliary labels in NMT. si are source tokens, ti target tokens, asi
source labels, and ai target labels.

layers are shared. Although transfer is more commonly used to strengthen the
encoder (Luong et al., 2015a; Niehues and Cho, 2017), there is other work explor-
ing target-side auxiliary tasks (Dalvi et al., 2017; Eriguchi et al., 2017; Nadejde
et al., 2017) concurrently with Publication X.
Figure 5.11 visualizes how target-side MTL resembles using a factored represen-

tation on the target side. The difference is that in a factored model, the labels are
present in both decoder input 2 and decoder output 3 , while in target-side MTL
they are only present in the output 3 . When training a system using factored
output, embedded gold standard labels are given as input to the decoder. During
translation gold standard labels are not available, and predicted labels are instead
fed back in, without accounting for the confidence of the predictions. This might
worsen the problems caused by exposure bias, i.e. the mismatch between the
data distributions during training (samples from the data) and inference (sam-
ples from the model) (Ranzato et al., 2016). In terms of computational cost, a
factored model needs to predict the auxiliary labels also during translation, slow-
ing down inference and complicating the beam search. A factored model might
also need to use a larger beam to avoid hypotheses with the same surface form
but different labels from crowding out more diverse hypotheses. In target-side
MTL, the auxiliary tasks are only performed during training, and no changes
need to be made to the inference.
Based on an ablation experiment, target-side multi-task learning improves bleu

by +2.03. PoS-tags and lemma clusters are important labels, but the morpholog-
ical tags are not. Not all auxiliary tasks are useful in MTL (Bingel and Søgaard,
2017; Bjerva, 2017). Belinkov et al. (2017) find that neural decoders learn very
little about word structure, as the attention mechanism removes much of the
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burden of learning word representations from the decoder. These results indi-
cate that syntactic supervision for the decoder is more useful than morphological
supervision.
A common type of error made by the system29 described in Publication X is

overtranslation through repetition. A possible explanation for the effect is the
lack of connection from the character-level decoder back to the word-level. The
architecture lacks this connection due to technical limitations of Theano. The
surface forms generated by the character-level decoder are conditionally indepen-
dent given the word-level hidden states, which can be similar to the states at
adjacent timesteps. The lack of this connection makes the architecture less well
suited to a morphologically rich target language, as the information loss becomes
more severe with increasing proportion of 〈unk〉s.
In subsequent related work, (Passban et al., 2018) use a target-side MTL ap-

proach by incorporating an auxiliary prediction channel in a character-based
decoder. The auxiliary label is stm for characters belonging to the stem, or the
identity of the affix for characters in affixes.

5.5.8 Overattending penalty

In neural machine translation, adequacy is reduced by two complementary issues:
undertranslation and overtranslation. In undertranslation, a part of the source
sentence is left untranslated, producing a shorter and less informative output.
In overtranslation, the translation of a part of the source sentence is included
several times in the output. A common error combines both, e.g. “Tapasin Bobin
ja Huldericin” 7! “I met Bob and Bob”, in which the common name “Bob” is
overtranslated and the rare name “Hulderic” is undertranslated. Overtranslation
also occurs when the decoder becomes stuck producing the same token over and
over “I met Bob and and and…”.
To reduce undertranslation, Wu et al. (2016) modify the beam search scoring

function30 by adding two heuristic penalties: length normalization (lp) and cov-
erage penalty (cp)

lp(t)= (|t|+λ)α

(1+λ)α
; cp(t,s)=β

|s|∑
i=1

log

(
min(

|t|∑
j=1

ai j,1.0)

)
. (5.6)

where the parameters α,β, and λ control the strengths of the penalties, and ai j

are the attention weights. Huang et al. (2017) propose an alternate bounded
length reward. Beam search penalties change the way in which the decoding is
performed, but do not change the model. Reducing undertranslation has also
been addressed by extending the model itself with coverage tracking components
inspired by fertility mechanisms in SMT (Tu et al., 2016), and by dual learn-
ing (Tu et al., 2017).
29Software available at https://github.com/Waino/hnmt.
30Beam search described in Section 3.5.
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Publication X proposes an overattending penalty (oap)

oap(t,s)=−γmax

(
|s|

max
i=1

( |t|∑
j=1

ai j −1.0
)
,0.0

)
. (5.7)

The γ parameter controls the strength of oap. The penalty is applied if the most
attended source word has sum attention over 1.0, i.e. the decoder has attended
to it more than is necessary to output a single target token. The overattending
penalty is monotonically increasing, which enables using it for early pruning of
active hypotheses. The overattending penalty is specifically designed to alleviate
an observed tendency of overtranslation in the hybrid word–character architec-
ture. It also requires a translation direction with a granularity asymmetry, in
which target sequences are generally shorter than source sequences. It is not
appropriate in the case where the decoder must emit several target tokens per
source token, e.g. in subword models.
A beam search scoring function incorporating all three penalties is given by

score(t,s)=− log
(
p(t |s)

)
lp(t)

+cp(t,s)+oap(t,s). (5.8)

5.5.9 Segmenting proper names in multi-scale NMT

One problem with the hybrid word–character encoder–decoder (Luong and Man-
ning, 2016) is the handling of rare copyable words, e.g. proper names. The
architecture is able to translate them, using the character-level encoder to repre-
sent, and the character-level decoder to generate. However, the information flows
through two single-vector bottlenecks in the word-level encoder and decoder re-
spectively, and the word-level attention mechanism is not able to alleviate the
bottleneck.
Publication X addresses the problem by adding an attention mechanism to the

character-level decoder, combined with character segmentation of names. To en-
able copying or transcription on a subword-level, the attended sequence needs to
be modified to contain the subword-level information. A simple solution involves
segmenting proper names into characters. Proper names are approximated using
a rough heuristic: any token longer than one character beginning with an upper
case letter or digit, after true-casing. All segmented characters are marked using
reserved symbols, similar to morph boundary marking. The first and last char-
acters of the sequence have distinct symbols separating them from word-internal
characters, and enabling reversible segmentation. The segmentation procedure
is inspired by Wu et al. (2016), who use a similar segmentation in their mixed
word–character model, which does not use multi-scale processing.
The combination of adding the attention mechanism in the character decoder

and segmenting names into characters yields an improvement of +4.3 bleu for
English!Finnish translation with the hybrid word–character encoder–decoder
architecture. While the proposed method is not directly applicable outside of
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Autoencoder eng–est eng–dan eng–slo

Method ML BT SRC HRL LRL chrF1 bleu rare chrF1 bleu rare chrF1 bleu rare

ML, AE, full BT ✓ ✓ ✓ ✓ 56.45 18.05 41.13 51.27 14.80 56.63 52.80 16.87 70.97
ML, no AE, full BT ✓ ✓ 56.33 18.15 40.85 51.20 15.00 57.39 52.65 16.63 70.82
ML, AE, no BT ✓ ✓ ✓ 51.71 14.04 34.79 50.06 13.92 54.58 50.19 14.02 69.94
Only ML ✓ 50.09 12.90 33.20 49.57 13.13 54.21 49.83 13.97 68.79
Only AE ✓ ✓ 42.65 8.19 21.59 42.26 7.60 44.48 38.97 6.25 62.51
Vanilla BT ✓† 36.12 5.51 13.25 – – – – – –
Vanilla 29.46 2.64 6.22 31.95 2.63 30.40 23.76 1.27 36.80

Table 5.4. Results for cross-lingual transfer (ML for multilingual), back-translation (BT), and
denoising sequence autoencoder (AE). ✓† indicates the use of a low-quality back-
translation made with a non-multilingual non-autoencoder vanilla BT model.

hybrid multi-scale models, the result does highlight the importance of copying
for rare proper names, a challenging class of words.

5.5.10 Multilingual NMT

(RQ3.2) Multilingual training is very effective in the settings examined in this
thesis. The benefit is most prominent for the language pairs with fewer resources.
In Publication VIII, the lower-resourced eng!est pair benefits +2.6 bleu. In
Publication IX, the largest gains of up to +12.7 bleu come from cross-lingual
transfer. In Publication VIII, even the higher-resourced eng!fin pair benefits
slightly from the cross-lingual transfer, with improvements up to +0.5 bleu for 3
of 4 test sets, and -0.1 bleu for the fourth test set. (RQ3.3) In accordance with
Zoph et al. (2016) and Dabre et al. (2017) and in contradiction with Kocmi and
Bojar (2018) the results of Publication IX support the conclusion that language
relatedness is more important than parent dataset size. Monolingual fine-tuning31

consistently improves results for both language pairs in Publication VIII. Fine-
tuning is also beneficial in Publication IX, but due to the very small data, fine-
tuning on a mix of tasks is important, and care must be taken to select task
weights to avoid overfitting.
The data conditions in these experiments—with a small number of related

languages and a very small amount of parallel data for the target language of
interest—are well suited for increasing cross-lingual transfer and minimizing in-
terference. The number of language pairs is not large enough to cause model
capacity issues, and data for a single pair is not large enough to make cross-
lingual transfer ineffective.

5.5.11 Asymmetric-resource transfer learning

Publication IX focuses on an asymmetric-resource multilingual MT scenario, in
which the goal is to improve translation into a low-resource language (LRL),
31Using the mixed pretraining setup described in Section 3.4.2.
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Method chrF1 bleu rare

3-phase scheduled multi-task 51.71 13.94 33.96
2-phase scheduled multi-task 51.42 13.75 33.83
Multi-task w/o schedule 48.62 11.98 29.16
HRL pretraining, LRL fine-tuning 48.15 11.35 29.88

Table 5.5. Results for scheduled multi-task learning. English-Estonian. All models are mul-
tilingual multi-task models using auxiliary autoencoder tasks in three languages:
source, high-resource target (HRL), and low-resource target (LRL) language. No
back-translation is used.

by maximally exploiting the available resources. The resources include a small
amount of parallel data for the SRC–LRL language pair of interest, and much
larger auxiliary parallel data between the same source and a high-resource lan-
guage (HRL), which is related to the LRL. Additionally there is monolingual
data for all three languages. The monolingual data is exploited in two different
ways: using a denoising sequence autoencoder (DSAE)32 task, and using
back-translation (BT).33 As a consequence, the setting involves a large number
of heterogeneous tasks, which can be grouped by the type of loss (translation or
DSAE), the origin of the data (natural or synthetic), and the amount of resources
(HRL or LRL).

(RQ3.2) Table 5.4 summarizes results on using cross-lingual transfer, back-
translation, and autoencoder. The largest individual gains of up to +12.7 bleu
come from cross-lingual transfer. (RQ3.4) For exploiting monolingual data, the
DSAE on its own results in up to +5.5 bleu improvement. Back-translation is
only effective when combined with the other techniques. When using only back-
translation, i.e. back-translating the data with a weak model trained only on the
low-resource parallel data, and then training a forward model augmented only by
this low-quality back-translation but not multilingual training or autoencoder, the
performance is very low: only +2.87 bleu better than the vanilla model without
back-translation. The high-quality back-translation together with multilingual
training gives an +12.7 bleu increase over the vanilla back-translation. Combin-
ing all the techniques together results in gains of up to +15.6 bleu. (RQ3.1) For
the vanilla model, reducing the size of the network and the minibatches resulted in
improved performance. However, training a large model with the additional aux-
iliary data resulted in much better performance. As seen in Table 5.3 on page 140,
this result reaches within a few bleu points of previous medium-resource results,
while using only 18 000 sentence pairs. (RQ4.1) Figure 5.12 shows how varying
the amount of low-resource data affects the translation quality.
32See Section 5.3.4 for denoising sequence autoencoder.
33Software available at https://github.com/Waino/OpenNMT-py/tree/dynamicdata.
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Figure 5.12. Varying the amount of low-resource data. Multilingual models, with
SRC+HRL+LRL autoencoder and full noise model. Results on
English!Estonian newstest2018.
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Figure 5.13. The task mix schedule used in the 3-phase scheduled multi-task learning ex-
periment. The 2-phase schedule is the same, except it omits the third phase,
continuing the second phase until the end of training.

Scheduled multi-task learning
Recall from Section 3.4.2 that fully sequential transfer may suffer from catas-
trophic forgetting, and fully parallel transfer requires careful tuning of task-mix
weights when the amounts of data are imbalanced. Scheduled multi-task learn-
ing allows a compromise between the two extremes. The schedules proposed by
Kiperwasser and Ballesteros (2018) are designed for the two-task case. A new
partwise constant task-mix schedule suitable for an asymmetric-resource setting
with multiple, heterogeneous auxiliary tasks is proposed in Publication IX. The
task-mix schedule can have an arbitrary number of steps, any of which can be mix-
ing multiple tasks. As an example of a task-mix schedule, the 3-phase schedule
is shown in Figure 5.13.
Table 5.5 shows evaluations for different configurations of transfer learning. The

system marked HRL pretraining, LRL fine-tuning uses a mix of HRL translation
and autoencoder tasks for pretraining, and only a single task—LRL translation—
for fine-tuning, and is thus fully sequential in terms of languages. It quickly
overfits in the fine-tuning phase, resulting in the weakest performance. Fully
parallel transfer is achieved by multi-task learning without schedule, trained with
a constant task mixing distribution.
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(RQ3.6) The models using scheduled multi-task learning effectively combine
sequential and parallel transfer, resulting in improved performance. In 2-phase
scheduled multi-task, LRL tasks are not used in the pretraining phase, but a mix
of tasks is used for fine-tuning. It gives a benefit of +2.4 bleu compared to the
model fine-tuning on only LRL tasks, and +1.77 bleu compared to training with
a constant mixing distribution. The 3-phase scheduled multi-task adds a third
phase training mostly on LRL tasks. A small proportion of HRL translation is
included to delay overfitting. The model again overfits in the final phase, but
does reach a higher score before doing so.

Noise model for text
To apply a denoising sequence autoencoder to text, a suitable noise model is
needed. In domains such as image and speech, there are very intuitive noises,
including rotating, scaling, and mirroring for images; and reverberation, time-
scale stretching, and pitch shifting for speech. As text is a sequence of discrete
symbols, where even a small change can have a drastic effect on meaning, suitable
noise models are less intuitive. It is not feasible to guarantee the noise does not
change the correct translation of the input.
Several noise models for text have been proposed in the literature. The con-

tributions of this thesis add two new noises: word boundary noise and taboo
sampling segmentation.

Local reordering. Lample et al. (2018a) perform a local reordering operation
σ that they call slightly shuffling the sentence. The reordering is achieved by
adding to the index i of each token a random offset drawn from the uniform distri-
bution from 0 to a maximum distance k. The tokens are then sorted according to
the offset indices. This maintains the condition ∀i ∈ {1,n}, |σ(i)− i| ≤ k. Instead of
shuffling tokens, Lewis et al. (2019) perform sentence permutation by randomly
shuffling the order of the original sentences in a document-level model.

Token deletion. Randomly dropping tokens is perhaps the most commonly used
noise. It is the central idea in word dropout (Iyyer et al., 2015), in which each
token is dropped according to a Bernoulli distribution parameterized by a tunable
dropout probability.

Token insertion. Randomly selected tokens can also be inserted into the sen-
tence. The tokens can be sampled from the entire vocabulary, or from a particular
class of tokens. E.g. Vaibhav et al. (2019) insert three classes of tokens: stop
words, expletives, and emoticons.

Token substitution. SwitchOut (Wang et al., 2018) applies random substitu-
tions to tokens both in the source and the target sentence. One benefit of
SwitchOut is that it can easily and efficiently be applied late in the data pro-
cessing pipeline, even to a numericalized and padded minibatch. Any noises that
affect the length of the sequence are best applied before numericalization.
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Figure 5.14. Transformations applied to data at training time. Steps with blue background
are part of the stochastic noise model. Steps with white background are the
deterministic target language token prefixing and length filtering. Length filtering
must be applied after segmentation, which may make the sequence longer.

Token masking. Masked language models (Devlin et al., 2019; Song et al., 2019;
Lewis et al., 2019; Joshi et al., 2020) apply a special case of token substitution,
randomly substituting tokens or spans of tokens with a mask symbol.

Word boundary noise is proposed in Publication IX. In another special case of
token substitution, the substituted token is selected deterministically as the token
with a word boundary marker either added or removed. E.g. “kielinen” would be
substituted by “ kielinen” and vice versa. This noise is aimed at the same issue
as the boundary correction procedure (Section 5.5.5), e.g. improving robustness
to compounding mistakes such as “*suomen kielinen” (Finnish speaker).

Subword regularization is a technique proposed by Kudo (2018) to harness
the segmentation ambiguity as a source of noise to improve robustness. While
most segmentation methods aim to limit the segmentation ambiguity as much
as possible, a probabilistic subword segmentation model can be used to generate
more variability in the input text. Each time a word token is used during training,
a new segmentation is sampled for it. Subword regularization is inspired by
latent sequence decompositions (Chan et al., 2016). The methods can be seen as
treating the subword segmentation as a latent variable. While marginalizing over
the latent variable exactly is intractable, the subword regularization procedure
approximates it through sampling. When training a neural model, sampling can
be performed on the fly for each minibatch.

Taboo sampling. Publication IX introduces a taboo sampling task for improv-
ing the modeling of segmentation ambiguity. Taboo sampling segmentation is a
special form of subword regularization (Kudo, 2018) for monolingual data. The
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method takes a single word sequence as input, and outputs two different seg-
mentations for it, such that the two segmentations consist of different subwords,
whenever possible. Only single character morphs are allowed to be reused on the
other side, to avoid failure if no alternative exists. E.g. “unreasonable” could
be segmented into “un++reasonable” on the source side and “unreason++able” on
the target side. When converted into numerical indices into the lexicon, these
two representations are completely different. The task aims to teach the model
to associate with each other the multiple ambiguous ways to segment a word, by
using a segmentation-invariant internal representation.
For each word, one segmentation is sampled in the usual way, after which

another segmentation is sampled using taboo sampling. During taboo sampling,
all multi-character subwords used in the first segmentation have their emission
probability temporarily set to zero. To avoid introducing a bias from having
all the taboo sampled segmentations on the same side, the sides are mixed by
swapping the source and target segmentations based on a binary mask m, drawn
uniformly from the set of masks of the same length as the sentence and with half
the bits set to 1

m ∈
{

{0,1}J :
J∑

i=1
mi =

⌈
J
2

⌉}
. (5.9)

Proposed noise model combinations. Figure 5.14 shows three pipelines for
noise model combination used in Publication IX. The pipeline for parallel data
(a) consists of only sampling segmentation. The primary pipeline for monolingual
data (b) is a concatenation of multiple noise models: local reordering, segmen-
tation, and token deletion. A secondary pipeline for monolingual data (c) uses
taboo segmentation. In all cases the output consists of a pair of source and target
sequences. Observe that the transformations are applied in the data loader at
training time, not as an off-line preprocessing stage. This allows the noise to be
resampled for each parameter update, which is critical when training continues
for multiple epochs of a small dataset. As a minor downside, the NMT software
needs to be modified to accommodate the heavier data loader, while preprocessing
generally requires no modifications to the software.

5.5.12 Synthetic data set for multimodal translation

Publication XI addresses multimodal machine translation (MMT), in particular
the image-guided translation task (Elliott et al., 2015; Specia et al., 2016), in
which the input consists of an image and an associated source language caption,
and the desired output is the target language caption. The task can be viewed
as extending textual translation with conditioning on a second input in a comple-
mentary modality. One of the major challenges in this task is the small amount
of primary training data containing all three parts: image, source text, and target
text. There is more abundant auxiliary data from related tasks, in the form of
image captioning data (image and source text, but no target text) and text-only
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Type of data Data set Images Source text Target text Sentences

MMT Multi30k ✓ ✓ ✓ 29k

Captioning MS-COCO ✓ ✓ + 616k

Translation OpenSubtitles + ✓ ✓ 23M/42M

Captioning Translation

MT

feat. synth.2

mean1

Figure 5.15. Approach for producing synthetic data for multimodal translation. Green plus
signs indicate synthetic data. For synthesizing image features, taking the mean of
existing image features (1) and using a feature synthesis model (2) are alternative
solutions.

translation data (source and target text, but no image). The three types of data
are shown in Figure 5.15.
In Publication XI, the auxiliary data was exploited by augmenting it with the

missing parts, to create synthetic training triples. To augment image caption-
ing data, the source language captions were ”forward-translated” into the target
language, with a separate text-only translation system. The downsides with this
form of data augmentation are the fact that noisy machine translation output
is used on the target side of the synthetic examples, and the inability of the
text-only translation system to use the image content. As a result, these syn-
thetic examples cannot teach the system to disambiguate based on the image
content, and instead bias the system towards resolving translational ambiguity
by selecting the most likely option based on textual context.
To augment the text-only translation data, dummy image features need to be

generated. In Publication XI, the dummy features were chosen to be the mean
of the image features in the training data, indicated by (1) in Figure 5.15. This
simple dummy feature is conceptually similar to the back-translation alternative
using a single dummy token on the source side (Sennrich et al., 2016).34 Un-
fortunately, the dummy features are not informative for resolving translational
ambiguity. (RQ3.5) The large amount of data using the dummy features biases
the model away from using the image features. To explore the effect of the visual
features on the translation, an adversarial evaluation was performed, in which the
multimodally trained model was deprived of the image features during decoding.
Instead of feeding in the actual visual features for the sentence, the mean vector
of all visual features in the training data was fed in. This resulted in only small
differences to the translated sentences, mostly consisting of minor variations in
word order, and nearly no effect on bleu scores. It is therefore clear that the
system does not effectively exploit the visual modality.
Despite these two detrimental biases and the resulting underuse of the visual in-

formation, the MeMAD system35 in Publication XI had the highest performance
of the task participants for the English!German and English!French language
34See Section 5.3.4 on use of synthetic data.
35Software available at https://github.com/Waino/OpenNMT-py/tree/develop_mmod.
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pairs, with human evaluators significantly preferring the MeMAD system over
the other systems (Barrault et al., 2018). In the automatic evaluation there was
a margin of +6.0 and +3.5 bleu respectively, to the other participants. This
result indicates that in this particular task, the general translation quality, and
in particular fluency of output, was much more important than any successful
visual disambiguation.
In spoken language translation, Jia et al. (2019) and Pino et al. (2019) use a

similar approach to create synthetic training data. In this task, training triples
consist of source audio, source transcript, and target text. A text-only translation
system is used to augment automatic speech recognition (ASR) data consisting
of source audio and source transcript in the same way as the image captioning
data in Publication XI. The text-only translation data is exploited in a different
way, however: synthetic speech audio is created using a text-to-speech (TTS)
system. This approach suggests a potential alternative feature synthesis method
for the image-guided translation task: training a separate feature synthesis model
to generate synthetic image features from the text data, indicated by (2) in
Figure 5.15. While synthesizing an actual image from the source text would be
a challenging and heavy task, it is not necessary to do so, as only the compact
features extracted from the image need to be synthesized.
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“The real voyage of discovery consists not in seeking
new lands but seeing with new eyes.

(Marcel Proust, 1923)”

6. Conclusions

This thesis has addressed the task of machine translation into low-resource mor-
phologically rich languages, by focusing on subword vocabulary construction. De-
veloping machine translation (MT) for these languages is important for enabling
access to information in a multilingual world that is rapidly becoming more and
more digital. There is an opportunity for cross-lingual transfer in multilingual
settings, with different languages and language pairs constituting multiple tasks
that can benefit from each other. Improvements in the ability to use auxiliary
data for training reduce the needed amount of parallel training data, making MT
feasible for more low-resource languages.
The alternative setting of fully unsupervised machine translation, while scientifi-

cally interesting, is unrealistic in practice (Artetxe et al., 2020b). The asymmetric-
resource setting, on the other hand, is very important for practical applications,
as small amounts of cross-lingual training signal, and larger amount of auxiliary
data are in practice always available. The challenge is learning from a large
amount of background data, but very little of exactly the right type of data. In
few-shot learning, currently a hot topic in machine learning research, the system
must learn from the background data without becoming too strongly biased to
prevent adaptation to new tasks. Augmenting with synthetic data raises concerns
of distributional mismatch between the natural and synthetic data. When large
amounts of synthetic data are added, the aspects that are well represented by
the synthetic data may improve, while other aspects deteriorate.1
In this thesis, two main approaches were used to address the low-resource con-

dition: improving subword vocabulary construction to make the learning more
data efficient, and exploiting auxiliary data via transfer, both in the form of
cross-lingual transfer and transfer from monolingual tasks.
A central theme of this thesis was the choice of basic units for representing

language. By segmenting words into subwords, it is possible to both get frequent,
easily learned representations, and to increase the symmetry between languages.
(RQ1.1) In low-resource settings and related target languages, optimal vocabu-
laries are small. For deterministic segmentation, such as BPE, the effect is more
pronounced. Using regularizing methods such as a subword sampling procedure
1See (RQ3.5) for an experiment highlighting this challenge.
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or a denoising sequence autoencoder (DSAE) lessens the impact of the subword
vocabulary size. When training multilingual segmentation models, it is impor-
tant to use a training data distribution that is balanced between languages, to
avoid bias towards the units needed for the high-resource languages.

(RQ1.2) It is not enough to select the size of the vocabulary, as the design of
the data-driven segmentation method also affects the distribution of the subwords.
Avoiding rare subwords is important. The segmentation can be improved by
increasing the consistency, or by embracing the variance in segmentation as a
source of noise for regularization. The two aims are only contradictory in extreme
cases, and future work could strive to combine them.

(RQ1.3) Learning setups, such as semi-supervised learning and active learning,
can improve segmentation consistency and reduce the annotation effort in mor-
phological segmentation. Morfessor FlatCat improves language-internal consis-
tency with hidden Markov model morphotactics. The flat lexicon allows a factor-
ization of the loss function that enables tuning, making Morfessor FlatCat excel at
semi-supervised training, with the best performance achieved by using Morfessor
FlatCat segmentations as features in a conditional random field. Active learn-
ing is superior to random selection for collecting annotations for semi-supervised
learning. The best query strategies are the proposed IFsubstrings and uncer-
tainty sampling combined with representative sampling. Omorfi-restricted Mor-
fessor applies another way to improve language-internal consistency, by using
linguistic knowledge from a rule-based morphological analyzer. Even though lin-
guistic morphs are not the optimal granularity for MT, it is not necessary for
data-driven segmentation to entirely ignore them.
Cross-lingual consistency can be between source and target or between multi-

ple target languages, and it can focus on overall symmetry between languages or
copyable rare items in particular. (RQ1.4) In this thesis, cross-lingual transfer
was used to improve symmetry in two ways. One approach tunes segmentation to-
wards a matching source–target granularity for SMT, outperforming a word-level
baseline. In the other, Cognate Morfessor improves target–target consistency in a
one-to-many multilingual setting, by using automatically extracted cognate pairs
to connect the segmentations of the two target languages. The cross-lingual seg-
mentation is beneficial for the lower-resourced eng!est, outperforming the BPE
system. Rare content words are very important for translation adequacy, but un-
fortunately rare items pose a challenge for machine learning. For a special class
of rare words—proper names—copying from source to target is possible. When
generating rare words on a character-level in a multi-scale decoder, segmenting
the copyable source words improves source–target consistency, and allows an at-
tention mechanism to perform character-by-character copying or transliteration.
As an alternative to seeking maximally consistent segmentations, subword reg-

ularization (Kudo, 2018) makes use of segmentation ambiguity as a regularizer,
essentially treating the subword segmentation as a latent variable to be approx-
imately marginalized over. Morfessor EM+Prune not only finds models with
both lower cost and better quality in unsupervised segmentation than Morfessor
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Baseline, but also retains the uncertainty of segmentation by estimating expected
occurrence counts rather than assigning all the probability mass to a single seg-
mentation for each word. This makes the method particularly well suited for
the sampling of alternative segmentations required by subword regularization. A
novel taboo sampling segmentation task creates a source–target pair from mono-
lingual data, by segmenting it in two ways that do not share subword units.
Learning to map between the segmentations forces learning of representations
that are robust to different segmentations. As a practical recommendation, when
using data augmentation techniques such as subword regularization or DSAE,
new noised examples should be resampled for each minibatch. This requires MT
software with support for stochastic transformations in the data loader.2 Gener-
ating a fixed number of variants in preprocessing is a workaround that results in
wasted disk space and inferior quality. Devlin et al. (2019) generated 10 replicas
of masked data in preprocessing, but Liu et al. (2019) showed that dynamically
sampling the mask for each minibatch is superior.

(RQ2.1) Subword information can improve evaluation of translation into mor-
phologically rich languages, as evidenced by the high correlation with human
evaluators of metrics such as LeBLEU and chrF.
Cross-lingual transfer is highly effective in the many-to-one setting, but less so

in the one-to-many setting used in this thesis (Arivazhagan et al., 2019b; Kocmi,
2019). However, in very low-resource settings the regularizing effect of the transfer
is crucial, making it feasible to train NMT models for extremely low-resource
language pairs that lack sufficient resources for the training of standard models.
To train an NMT system for translation into a low-resource morphologically rich
language in a practical setting, additional resources from related tasks should be
exploited.

(RQ3.1) When training only on low-resource tasks, it is beneficial to reduce the
model size, train with smaller minibatches, and regularize heavily (Nguyen and
Chiang, 2018; Sennrich and Zhang, 2019). However, the benefit from auxiliary
multilingual and monolingual data outweighs the improvement from optimizing
training for low-resource settings. When auxiliary data is available, using it in
large models with large batch sizes performs better.

(RQ3.2) When resources for the translation task of interest are scarce, the most
important auxiliary data is parallel data from related languages. Multilingual
training improves quality for both low-resource and medium-resource language
pairs. The largest individual gains of up to +12.7 bleu came from cross-lingual
transfer. Other types of auxiliary data, such as monolingual corpora, are also
beneficial and the gains are partly cumulative.

(RQ3.3) The results of this thesis support the conclusion that language relat-
edness is more important than parent dataset size. This result is in accordance
with Zoph et al. (2016) and Dabre et al. (2017) and in contradiction with Kocmi
2A prototype implemented in my dynamicdata fork of OpenNMT-py https://github.
com/Waino/OpenNMT-py. Later, the dataloader of OpenNMT-py version 2.0 was re-
designed to incorporate my proposals.
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and Bojar (2018).
(RQ3.4) Both DSAE and back-translation (Sennrich et al., 2016) are effective

ways to exploit monolingual data. The DSAE on its own resulted in up to +5.5
bleu improvement. Back-translation was only effective when combined with the
other techniques, but not sufficient on its own. Combining all the techniques
resulted in gains of up to +15.6 bleu. Monolingual auxiliary tasks were most
useful for the low-resource target language and the source language, but not for
the high-resource target language. A low-resource target-language autoencoder
was beneficial even when using multilingual training, but inconclusive together
with back-translated data. DSAE should be used when training the model for
producing the back-translation.

(RQ3.5) The experiment in multimodal translation is an example of how chal-
lenging asymmetric data conditions can be. When large amounts of synthetic
data are added, the aspects that are well represented by the synthetic data may
improve, while other aspects deteriorate. This effect was shown in multimodal
translation, where overall fluency was greatly improved, while simultaneously
biasing the system away from using the additional input modality.

(RQ3.6) Combining sequential and parallel transfer results in a scheduled
multi-task learning technique for settings with multiple asymmetric-resource tasks.
The model using 3-phase scheduled multi-task learning outperforms fully sequen-
tial (+2.6 bleu) and fully parallel transfer (+2.0 bleu). Fine-tuning only on the
low-resource tasks is prone to overfitting. How to optimize weights for the task-
mix schedule without resorting to a heavy grid search is still an open question.

(RQ4.1) Although more data is better, 10 000 sentence pairs of parallel data is
sufficient to reach above 13 bleu already with multilingual training and DSAE,
but without the use of back-translation. Increasing the amount of data to 18 000
pairs yields diminishing returns of only a 5% relative increase. Adding back-
translation brings the quality at 18k pairs to a quite acceptable level of 18.05 bleu,
reaching within a few bleu points of my previous medium-resource results,3 while
using under 2% of the amount of parallel data.
Considering how much can be accomplished with such small amounts of data,

I would like to propose for future work a return to the idea of using elicitation
corpora in MT system development (Nirenburg, 1998; Probst and Levin, 2002),
but this time in combination with NMT. A small uncontrolled corpus risks be-
ing redundant or skewed in domain, which would be likely to hurt performance.
An alternative is a designed, language-independent elicitation corpus, covering
linguistic phenomena as widely as possible (Beale, 2012; Sylak-Glassman et al.,
2016). In addition to containing lexical items for the most important concepts,
sets of sentences would be constructed to include features such as number, tem-
poral relationships, aspect, mood, and spatial orientation covering all the values
these features take on (such as singular, dual, plural, and paucal for number). As
a distinction from what linguists usually do, the corpus would capture also the
3As shown in Table 5.3 on page 140.

156



Conclusions

frequent and ordinary phenomena, instead of concentrating on the distinguishing
and exceptional. If commercial translation services are available for the language,
the estimated cost of translating such a corpus of 10k sentences would amount
to less than 50 000€4, substantially increasing the number of language pairs for
which quality NMT is feasible. The translated corpora would constitute a mas-
sively multilingual parallel corpus.

When a natural disaster, epidemic, or other crisis occurs, a low-resource language
(LRL) spoken in an affected area may suddenly become highly interesting. There
is a need both for translation from the LRL to enable non-natives to monitor local
reporting, and also to translate informational material into the LRL. If a mas-
sively multilingual universal parent system has been trained ahead-of-time, it can
be adapted using transfer learning to rapidly develop a new MT system (Neubig
and Hu, 2018; Gheini and May, 2019). Scheduled multi-task learning can still be
applied, by first pretraining on a mix of high-resource tasks, and later fine-tuning
on a mix including the new target language (the child LRL).
Even though the child LRL does not need to be present in the parallel training

data of the universal parent system, the segmentation that the parent was trained
on is not easily changed. Word-level models are not well suited to morphologically
rich languages, particularly in low-resource settings. Therefore it is important
to develop a universal segmentation, that is able to represent all languages of
interest equally well. To date, most attempts at universal lexical representations
have chosen (whitespace delimited) words as the basic unit (Ammar et al., 2016;
Gu et al., 2018a). To account for varying granularity between languages, a truly
universal representation should represent concepts or atomic units of meaning,
that do not depend on the conventions of a particular language. From an ethical
viewpoint, a language that is poorly represented by the chosen standard universal
representations would be unable to fully benefit from cross-lingual transfer.
Linguistic annotation is typically produced on a word level, but using word-level

annotations in a subword model is not trivial. One method exploiting word-level
annotations, using a hybrid word–character model, was presented. Operating
on the word level is not equally suitable for all languages, so perhaps more fine-
grained annotations on the level of morphemes would be useful for morphologi-
cally rich languages.
In the mainstream of neural network research, the ideal is to completely eschew

engineered representations, instead allowing a large, deep network to learn im-
plicit representations that are distributed through the intermediary states. In the
case of textual NLP, going in this direction means using character-level models.
The model must be deep enough so that it can perform the necessary compu-
tation to extract and refine the features. Training sequences are long, due to
the fine granularity of the input. This line of research involves using enormous
amounts of data with a model that makes few assumptions. The computations
4Estimated using a price of 0.40€ per word, and sentences of 12.5 words.
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incur a substantial cost, both monetary and in the form of energy and associated
CO2 emissions. To train a single BERT (Devlin et al., 2019) model on V100x64
would cost up to $12 571 and emit approximately 652 kg of CO2, roughly equiv-
alent to a trans-American flight (Strubell et al., 2019). GPT-3 (Brown et al.,
2020), an enormous 175 billion parameter model which took hundreds of zetta-
operations5 of computation to train, has been estimated to cost $4.6M to train
using a commercial V100 cloud instance (Li, 2020). The cost of training could
become a limiting factor in the ability of organizations to perform NLP research.
On a positive note, the cost to train a universal parent model can be amortized
over multiple instances of adaptation, and the cost of a single adaptation is much
more reasonable.
An alternative strategy uses more moderate model sizes and amounts of data,

together with sophisticated modeling. Instead of relying on quantity, improve-
ments would be made to the ability of the model to generalize, so that less data is
sufficient. In this strategy, selecting suitable subword units for optimal transfer
and generalization may still play an important role. It should also not be forgot-
ten that language is symbolic. The ability to compose those symbols and reason
about the meanings of the compositions makes language into the powerful tool
that it is. New paradigms based on hybridizing neural and symbolic computa-
tion (Besold et al., 2017) or modeling compositionality and causality (Lake et al.,
2015) could also bring the selecting of basic units to the forefront.
To conclude, the work on this thesis has been an exciting and wondrous journey,

that started during the paradigm shift to NMT and followed its spectacular rise
for a while. I am happy to have contributed to it in some small way.

5Converted from the odd unit petaflop/s-days used by Brown et al. (2020). A better
unit for computation is needed.
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“Morphology is inherently messy.
(Joan B. Hooper, 1979)”

Errata

Publication III

In Section 1 paragraph 4, Morphological surface segmentation is a related, simpli-
fied problem compared to morphological analysis. However, it is not a relaxation
but rather a more constrained problem.
Table 1 Only mentions the original size of the evaluation pool (800 word types),

but does not give the size of the final annotated test set (796 word types).

Publication VII

In Section 1 paragraph 5, “need to marginalize over the whole vocabulary during
prediction” should instead read “the softmax to normalize the output probability
distribution requiring a summation over the whole vocabulary”.
In the last paragraph of Section 2.3, the linear combination should be a log-

linear combination.

Publication X

The beam search scoring function (Equation 3) adds length normalization lp(y),
instead of dividing by it. A corrected equation is shown in Equation 5.8 of the
thesis introduction.
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Publication I

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and Mikko Kurimo. Morfessor
FlatCat: An HMM-based method for unsupervised and semi-supervised learn-
ing of morphology. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics, Dublin, Ireland, pages 1177–1185,
Aug 2014.
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Abstract

Morfessor is a family of methods for learning morphological segmentations of words based
on unannotated data. We introduce a new variant of Morfessor, FlatCat, that applies a hid-
den Markov model structure. It builds on previous work on Morfessor, sharing model compo-
nents with the popular Morfessor Baseline and Categories-MAP variants. Our experiments show
that while unsupervised FlatCat does not reach the accuracy of Categories-MAP, with semi-
supervised learning it provides state-of-the-art results in the Morpho Challenge 2010 tasks for
English, Finnish, and Turkish.

1 Introduction

Morphological analysis is essential for automatic processing of compounding and highly-inflecting lan-
guages, for which the number of unique word forms may be very large. Apart from rule-based analyzers,
the task has been approached by machine learning methodology. Especially unsupervised methods that
require no linguistic resources have been studied widely (Hammarström and Borin, 2011). Typically
these methods focus on morphological segmentation, i.e., finding morphs, the surface forms of the mor-
phemes.

For language processing applications, unsupervised learning of morphology can provide decent-
quality analyses without resources produced by human experts. However, while morphological ana-
lyzers and large annotated corpora may be expensive to obtain, a small amount of linguistic expertise is
more easily available. A well-informed native speaker of a language can often identify the different pre-
fixes, stems, and suffixes of words. Then the question is how many annotated words makes a difference.
One answer was provided by Kohonen et al. (2010), who showed that already one hundred manually
segmented words provide significant improvements to the quality of the output when comparing to a
linguistic gold standard.

The semi-supervised approach by Kohonen et al. (2010) was based on Morfessor Baseline, the sim-
plest of the Morfessor methods by Creutz and Lagus (2002; 2007). The statistical model of Morfessor
Baseline is simply a categorical distribution of morphs—a unigram model in the terms of statistical lan-
guage modeling. As the semi-supervised Morfessor Baseline outperformed all unsupervised and semi-
supervised methods evaluated in the Morpho Challenge competitions (Kurimo et al., 2010a) so far, the
next question is how the approach works for more complex models.

Another popular variant of Morfessor, Categories-MAP (CatMAP) (Creutz and Lagus, 2005), models
word formation using a hidden Markov model (HMM). The context-sensitivity of the model improves
the precision of the segmentation. For example, it can prevent splitting a single s, a common English
suffix, from the beginning of a word. Moreover, it can disambiguate between identical morphs that are
actually surface forms of different morphemes. Finally, separation of stems and affixes in the output
makes it simple to use the method as a stemmer.

In contrast to Morfessor Baseline, the lexicon of CatMAP is hierarchical: a morph that is already in
the lexicon may be used to encode the forms of other morphs. This has both advantages and drawbacks.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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One downside is that it mixes the prior and likelihood components of the cost function, so that the semi-
supervised approach presented by Kohonen et al. (2010) is not usable.

1.1 Hierarchical versus flat lexicons
From the viewpoint of data compression and following the two-part Minimum Description Length prin-
ciple (Rissanen, 1978), Morfessor tries to minimize the number of bits needed to encode both the model
parameters and the training data. Equivalently, the cost function L can be derived from the Maximum a
Posteriori (MAP) estimate:

θ̂ = arg max
θ

P(θ |D) = arg min
θ

(− log P(θ)− log P(D | θ)) = arg min
θ

L(θ, D), (1)

where θ are the model parameters, D is the training corpus, P(θ) is the prior of the parameters and
P(D | θ) is the data likelihood.

In context-independent models such as Morfessor Baseline, the parameters include only the forms and
probabilities of the morphs in the lexicon of the model. Morfessor Baseline and Categories-ML (CatML)
(Creutz and Lagus, 2004) use a flat lexicon, in which the forms of the morphs are encoded directly as
strings: each letter requires a certain number of bits to encode. Thus longer morphs are more expensive.
Encoding a long morph is worthwhile only if the morph is referred to frequently enough from the words
in the training data. If a certain string, let us say segmentation, is common enough in the training data, it
is cost-effective to have it as a whole in the lexicon. Splitting it into two items, segment and ation, would
double the number of pointers from the data, even if those morphs were already in the lexicon. The
undersegmentation of frequent words becomes evident especially if the training data is a corpus instead
of a list of unique word forms.

In contrast, Morfessor CatMAP applies a hierarchical lexicon, which makes use of the morphs that
are already in the lexicon. Instead of encoding the form of segmentation by its 12 letters, we could just
encode the form with two references to the forms of the morphs segment and ation. This may also cause
errors, for example encoding station with st and ation.

The lexicon of Morfessor CatMAP allows but does not force hierarchical encoding for the forms:
each morph has an extra parameter that indicates whether it has a hierarchical representation or not. The
problem of oversegmentation, as in st + ation, is solved using the morph categories. The categories,
which are states of the HMM, include stem, prefix, suffix, and a special non-morpheme category. The
non-morpheme category is intended to catch segments that do not fit well into the three proper morph
categories because they are fragments of a larger morph. In our example, the morph st cannot be a suffix
as it starts the word, it is unlikely to be a prefix as it directly precedes a common suffix ation, and it is
unlikely to be a stem as it is very short. Thus the algorithm is likely to use the non-morpheme state. The
hierarchy is expanded only up to the level in which there are no non-morphemes, so the final analysis is
still station. Without the hierarchy, the non-morphemes have to be removed heuristically, as in CatML
(Creutz and Lagus, 2004).

A hierarchical lexicon presents some challenges to model training. For a standard unigram or HMM
model, if you know the state and emission sequence of the training data, you can directly derive the
maximum likelihood (ML) parameters of the model: a probability of a morph is proportional to the
number of times it is referred to, conditional on the state in the HMM. But if the lexicon is partly
hierarchical, also the references within the lexicon add to the reference counts, and there is no direct way
to find the ML parameters even if the encoding of the training data is known. Similarly, semi-supervised
learning cannot be accomplished simply by adding the counts from an annotated data set, as it is not
clear when to use hierarchy instead of segmenting a word directly in the data.

Moreover, for a flat lexicon, the cost function divides into two parts that have opposing optima: the
cost of the data (likelihood) is optimal when there is minimal splitting and the lexicon consists of the
words in the training data, whereas the cost of the model (prior) is optimal when the lexicon is minimal
and consists only of the letters. In consequence, the balance of precision and recall of the segmentation
boundaries can be directly controlled by setting a weight for the data likelihood. Tuning this hyper-
parameter is a very simple form of supervision, but it has drastic effects on the segmentation results

1178



(Kohonen et al., 2010). A direct control of the balance may also be useful for some applications: Virpioja
et al. (2011) found that the performance of the segmentation algorithms in machine translation correlates
more with the precision than the recall. The weighting approach does not work for hierarchical lexicons,
for which changing the weight does not directly affect the decision whether to encode the morph with
hierarchy or not.

1.2 Morfessor FlatCat
In this paper, we introduce a new member to the Morfessor family, Morfessor FlatCat. As indicated by its
name, FlatCat uses a flat lexicon. Our hypothesis is that enabling semi-supervised learning is effective in
compensating for the undersegmentation caused by the lack of hierarchy. In particular, semi-supervised
learning can improve modeling of suffixation. In the examined languages, suffixes tend to serve syntactic
purposes, such as marking case, tense, person or number. Examples are the suffix s marking tense and
person in she writes and number in stations. Thus the suffix class is closed and has only a small number
of morphemes compared to the prefix and stem categories. As a consequence, a large coverage of suffixes
can be achieved already with a relatively small annotated data set.

The basic model of morphotactics in FlatCat is the same as in the CatML and CatMAP variants: a
hidden Markov model with states that correspond to a word boundary and four morph categories: stem,
prefix, suffix, and non-morpheme. As in CatML, we apply heuristics for removal of non-morphemes
from the final segmentation. However, because FlatCat uses MAP estimation of the parameters, these
heuristics are not necessary during the training for controlling the model complexity, but merely used as
a post-processing step to get meaningful categories.

Modeling of morphotactics improves the segmentation of compound words, by allowing the overall
level of segmentation to be increased without increasing the number of correct morphs used in incorrect
positions. As the benefits of semi-supervised learning and improved morphotactics are likely to com-
plement each other, we can expect improved performance over the semi-supervised Morfessor Baseline
method. By experimental comparison to the previous Morfessor variants, we are able to shed more light
on the effects of using an HMM versus unigram model for morphotactics, using a hierarchical versus flat
lexicon, and exploiting small amounts of annotated training data.

2 FlatCat model and algorithms

Morfessor FlatCat uses components from the older Morfessor variants. Instead of going through all the
details, we refer to the previous work and highlight only the differences. Common components between
Morfessor methods are summarized in Table 1.

As a generative model, Morfessor FlatCat describes the joint distribution P(A, W | θ) of words and
their analyses. The words W are observed, but their analyses, A, is a latent variable in the model. An
analysis of a word contains its morphs and morph categories: prefix, stem, suffix, and non-morpheme.

As marginalizing over all possible analyses is generally infeasible, point estimates are used during the
training. The likelihood conditioned on the current analyses is

P(D |A, θ) =
|D|∏
j=1

P(Aj | θ). (2)

If mi are the morphs in Aj , ci are the hidden states of the HMM corresponding to the categories of the
morphs, and # is the word boundary, P(Aj | θ) is

P(c1 |#)
|Aj |∏
i=1

[
P(mi | ci) P(ci+1 | ci)

]
P(# | c|Aj |). (3)

Morfessor FlatCat applies an MDL-derived prior designed to control the number of non-zero param-
eters. The prior is otherwise the same as in Morfessor Baseline, but it includes the usage properties
from Morfessor CatMAP: the length of the morph and its right and left perplexity. The perplexity mea-
sures describe the predictability of the contexts in which the morph occurs. The emission probability of
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Morfessor method

Component Baseline CatMAP CatML FlatCat

Lexicon type Flat Hierarchy Flat Flat
Morphotactics Unigram HMM HMM HMM
Estimation MAP MAP ML MAP
Semi-supervised Implemented Not implemented Not implemented Implemented

Table 1: Overview of similarities and differences between Morfessor methods.

a morph conditioned on the morph category, P(m | c), is calculated from the properties of the morphs
similarly as in CatMAP.

2.1 Training algorithms
The parameters are optimized using a local search. Only a part of the parameters are optimized in each
step: the parameters that are used in calculating the likelihood of a certain part, unit, of the corpus. Units
vary in complexity, from all occurrences of a certain morph to the occurrences of a morph bigram whose
context fits to certain criteria.

The algorithm tries to simultaneously find the optimal segmentation for the unit and the optimal pa-
rameters consistent with that segmentation:

(A, θ) = arg min
OP(A,θ)

{
L(θ, A, D)

}
. (4)

The training operators OP define the units changed by the local search and the alternative segmentations
tried for each unit. There are three training operators: split, join and resegment, analogous to the similarly
named stages in CatMAP.

The split operator is applied first. It targets all occurrences of a specific morph in the corpus simultane-
ously, attempting to split it into two parts. The whole corpus is processed by sorting the current morphs
by length from shortest to longest.

The second operator attempts to join morph bigrams, grouped by the position of the bigram in the
word. The position grouped bigram counts are sorted by frequency, from most to least common.

Finally, resegmenting uses the generalized Viterbi algorithm to find the currently optimal segmentation
for one whole word at a time. This operator targets each corpus word in increasing order of frequency.

The heuristics used in FlatCat to remove non-morphemes from the final segmentation are the fol-
lowing: All consequent non-morphemes are joined together. If the resulting morph is longer than 4
characters, it is accepted as a stem. All non-morphemes preceded by a suffix and followed by only suf-
fixes or other non-morphemes are recategorized as suffixes without joining with their neighbors. If any
short non-morphemes remain, they are joined either to the preceding or following morphs (the latter only
for those in the initial position).

2.2 Semi-supervised learning
Kohonen et al. (2010) found that semi-supervised learning of Morfessor models was not effective by
only fixing the values of the analysis A for the annotated samples DA. Their solution was to introduce
corpus likelihood weights α and β, one for the unannotated data set and one for the annotated data set.
Thus, instead of optimizing the MAP estimate, Kohonen et al. (2010) minimize the cost

L(θ, A, D, DA) = − log P(θ)− α log P(D |A, θ)− β log P(DA |A, θ). (5)

The weights can be tuned on a development set. We use the same scheme for FlatCat.
The likelihood of the annotated data is calculated using the same HMM that is used for the unannotated

data. The morph properties are estimated only from the unannotated data. To ensure that the morphs
required for the annotated data can be emitted, a copy of each word in the annotations is added to the
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(a) English.

Method α β Pre Rec F

U Baseline 1.0 – .88 .59 .71
U CatMAP – – .89 .51 .65
U FlatCat 1.0 – .90 .57 .69

W Baseline 0.7 – .83 .62 .71
W FlatCat 0.5 – .84 .60 .70

SS Baseline 1.0 3000 .83 .77 .80
SS FlatCat 0.9 2000 .86 .76 .81
SS CRF+FlatCat 0.9 2000 .87 .77 .82

S CRF – – .92 .73 .81

(b) Finnish.

Method α β Pre Rec F

U Baseline 1.0 – .84 .38 .53
U CatMAP – – .76 .51 .61
U FlatCat 1.0 – .84 .38 .52

W Baseline .02 – .62 .54 .58
W FlatCat .015 – .66 .52 .58

SS Baseline .1 15000 .75 .72 .73
SS FlatCat .2 1500 .79 .71 .75
SS CRF+FlatCat .2 2500 .82 .76 .79

S CRF – – .88 .74 .80

Table 2: Boundary Precision and Recall results in comparison to gold standard segmentation. Abbrevi-
ations have been used for Unsupervised (U), likelihood weighted (W), semi-supervised (SS) and fully
supervised (S) methods. Best results for each measure have been hilighted using boldface.

unannotated data. This unannotated copy is loosely linked to the annotated word: operations that would
result in the removal of a morph required for the annotations from the lexicon cannot be selected, as such
an operation would have infinite cost.

3 Experiments

We compare Morfessor FlatCat1 to two previous Morfessor methods and a fully supervised discrimi-
native segmentation method. The Morfessor methods used as references are the CatMAP2 and Base-
line3 implementations by Creutz and Lagus (2005) and Virpioja et al. (2013), respectively. Virpioja et
al. (2013) implements the semi-supervised method described by Kohonen et al. (2010). For a super-
vised discriminative model, we use a character-level conditional random field (CRF) implementation by
Ruokolainen et al. (2013)4.

We use the English, Finnish and Turkish data sets from Morpho Challenge 2010 (Kurimo et al.,
2010b). They include large unannotated word lists, one thousand annotated words for training, 700–
800 annotated words for parameter tuning, and 10× 1000 annotated words for testing.

For evalution, we use the BPR score by Virpioja et al. (2011). The score calculates the precision (Pre),
recall (Rec), and F1-score (F) of the predicted morph boundaries compared to a linguistic gold standard.
In the presence of alternative gold standard analyses, we weight each alternative equally.

We also report the mean average precision from the English and Finnish information retrieval (IR)
tasks of the Morpho Challenge. The Lemur Toolkit (Ogilvie and Callan, 2001) with Okapi BM25 rank-
ing was used. The Finnish data consists of 55K documents, 50 test queries and 23K binary relevance
assessments. The English data consists of 170K documents, 50 test queries and 20K binary relevance as-
sessments. The domain of both data sets is short newspaper articles. All word forms in both the corpora
and the queries were replaced by the morphological segmentation to be evaluated.

Morfessor FlatCat is a pipeline method that refines an initial segmentation given as input. We try two
different initializations for the semi-supervised setting: initializing with the segmentation produced by
semi-supervised Morfessor Baseline, and initializing with the CRF segmentation. All unsupervised and
likelihood-weighted results are initialized with the corresponding Baseline output.

All methods were trained using word types. The weight and perplexity threshold parameters were
optimized separately for each method, using a grid search with the held-out data set. The supervised
CRF method was trained using the one thousand word annotated training data set.

1Available at https://github.com/aalto-speech/flatcat
2Available at http://www.cis.hut.fi/projects/morpho/morfessorcatmap.shtml
3Available at https://github.com/aalto-speech/morfessor
4Available at http://users.ics.aalto.fi/tpruokol/
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Method α β Pre Rec F

U Baseline 1.0 – .85 .36 .51
U CatMAP – – .83 .50 .62
U FlatCat 1.0 – .87 .36 .51

W Baseline 0.1 – .71 .41 .52
W FlatCat 0.3 – .88 .38 .53

SS Baseline 0.4 2000 .86 .60 .71
SS FlatCat 0.8 2666 .87 .59 .70
SS CRF+FlatCat 1.0 3000 .87 .61 .72

S CRF – – .89 .58 .70

Table 3: Boundary Precision and Recall results in comparison to gold standard segmentation for Turkish.
Abbreviations have been used for Unsupervised (U), likelihood weighted (W), semi-supervised (SS) and
fully supervised (S) methods. Best results for each measure have been hilighted using boldface.

3.1 Comparison to linguistic gold standards

The results of the BPR evaluations are shown in Tables 2 (English, Finnish) and 3 (Turkish). Semi-
supervised FlatCat initialized using CRF achieves the highest F-score for both the English and Turkish
data sets. The difference between the highest and second-highest scoring methods is statistically signifi-
cant for Finnish and Turkish, but not for English (Wilcoxon signed-rank test, p < 0.01).

Table 4 shows BPR for subsets of words consisting of different morph category patterns. Each subset
consists of 500 words from the English or Finnish gold standard, with one of five selected morph patterns
as the only valid analysis. The subsets consist of words with the following morph patterns: words that
should not be segmented (STM), compound words consisting of exactly two stems (STM + STM), a
prefix followed by a stem (PRE + STM), a stem followed by a single suffix (STM + SUF) and a stem
and exactly two suffixes (STM + SUF + SUF). For the STM pattern only precision is reported, as recall
is not defined for an empty set of true boundaries.

The fact that semi-supervised FlatCat compares well against CatMAP in recall, for all morph patterns
and for the test set as a whole, indicates that supervision indeed is effective in compensating for the
undersegmentation caused by the lack of hierarchy in the lexicon. The benefit of modeling morphotactics
can be seen in improved precision for the STM + STM (for English and Finnish) and PRE + STM (for
Finnish) patterns when comparing against semi-supervised Baseline. The more aggressive segmentation
of Baseline gives better results for the English PRE + STM subset than for Finnish due to the shortness
of the English prefixes (on average 3.6 letters for the English and 5.3 for the Finnish subset). While
not directly observable in Table 4, a large part of the improvement over semi-supervised Baseline is
explained by that FlatCat does not use suffix-like morphs in incorrect positions.

Initializing the FlatCat model with CRF segmentation improves the F-scores in all subsets compared
to the initialization with Morfessor Baseline. While FlatCat cannot keep the accuracy of the suffix
boundaries at as high level as CRF, it clearly improves the stem splitting.

3.2 Information retrieval

Stemming has been shown to improve IR results (Kurimo et al., 2009), by removing inflection that is
often not relevant to the query. The morph categories make it possible to simulate stemming by removing
morphs categorized as prefixes or suffixes. As longer affixes are more likely to be meaningful, we limited
the affix removal to morphs of at most 3 letters. For methods that use morph categories, we report two
IR results: the first using all the data and the second with short affix removal (SAR) applied.

In the IR results, we include the topline methods from Morpho Challenge: Snowball Porter stemmer
(Porter, 1980) for English and “TWOL first” for Finnish. The latter selects the lemma from the first
of the possible analyses given by the morphological analyzer FINTWOL (Lingsoft, Inc.) based on the
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(a) English.

STM STM + STM PRE + STM STM + SUF STM + SUF + SUF

Method Pre Pre Rec F Pre Rec F Pre Rec F Pre Rec F

U CatMAP .90 .94 .63 .75 .91 .64 .75 .87 .45 .59 .90 .51 .65
SS Baseline .64 .93 .77 .84 .82 .74 .77 .83 .86 .84 .91 .79 .85
SS FlatCat .68 .94 .65 .77 .78 .62 .69 .86 .88 .87 .94 .79 .86
SS CRF+FlatCat .68 .95 .78 .86 .78 .66 .72 .87 .89 .88 .94 .80 .87
S CRF .78 .94 .72 .81 .85 .59 .69 .92 .91 .91 .95 .82 .88

(b) Finnish.

STM STM + STM PRE + STM STM + SUF STM + SUF + SUF

Method Pre Pre Rec F Pre Rec F Pre Rec F Pre Rec F

U CatMAP .77 .90 .97 .94 .88 .96 .92 .67 .46 .54 .68 .38 .49
SS Baseline .50 .82 .88 .85 .73 .83 .78 .64 .85 .73 .76 .78 .77
SS FlatCat .49 .91 .95 .93 .80 .89 .85 .67 .84 .75 .77 .75 .76
SS CRF+FlatCat .53 .91 .96 .94 .84 .94 .88 .71 .88 .79 .80 .79 .79
S CRF .68 .88 .91 .89 .90 .91 .91 .83 .91 .87 .91 .85 .88

Table 4: Results of BPR experiments with different morph category patterns. Best results for each
measure have been hilighted using boldface.

two-level model by Koskenniemi (1983). As baseline results we also include unsegmented word forms
and truncating each word after the first five letters (First 5).

The results of the IR experiment are shown in Table 5. FlatCat provides the highest score for Finnish.
The English scores are similar to those of the semi-supervised Baseline. FlatCat performs better than
CRF for both languages. This is explained by the higher level of consistency in the segmentations
produced by FlatCat, which makes the resulting morphs more useful as query terms. The number of
morphs in the lexicons of FlatCat initialized using CRF are 108 391 (English), 46 123 (Finnish) and
74 193 (Turkish), which is much smaller than the respective morph lexicon sizes counted from the CRF
segmentation: 339 682 (English), 396 869 (Finnish) and 182 356 (Turkish). This decrease in lexicon
size indicates a more structured segmentation.

The IR performance of semi-supervised FlatCat benefits from the removal of short affixes for English
when initialized by CRF, and Finnish for both initializations. It also improves the results of unsupervised
FlatCat and CatMAP for Finnish, but lowers the precision for English. A possible explanation is that the
unsupervised methods do not analyze the suffixes with a high enough accuracy.

4 Conclusions

We have introduced a new variant of the Morfessor method, Morfessor FlatCat. It predicts both morphs
and their categories based on unannotated data, but also annotated training data can be provided. It was
shown to outperform earlier Morfessor methods in the semi-supervised learning task for English, Finnish
and Turkish.

The purely supervised CRF-based segmentation method proposed by Ruokolainen et al. (2013) outper-
forms FlatCat for Finnish and reaches the same level for English. However, we show that a discriminative
model such as CRF gives inconsistent segmentations that do not work as well in a practical application:
In English and Finnish information retrieval tasks, FlatCat clearly outperformed the CRF-based segmen-
tation.

We see two major directions for future work. Currently Morfessor FlatCat, like most Morfessor meth-
ods, assumes that words in a sentence occur independently. Making use of the sentence context in which
words occur would, however, allow making Part-Of-Speech -like distinctions. These distinctions could
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(a) English.

Rank Method SAR MAP

1 – Snowball Porter – 0.4092
2 SS Baseline – 0.3855
3 SS FlatCat No 0.3837
4 SS FlatCat Yes 0.3821
5 SS CRF+FlatCat Yes 0.3810
6 SS CRF+FlatCat No 0.3788
7 S CRF – 0.3771
8 W Baseline – 0.3761
9 U Baseline – 0.3695
10 U CatMAP No 0.3682
11 U CatMAP Yes 0.3653
12 W FlatCat No 0.3651
13 – (First 5) – 0.3648
14 W FlatCat Yes 0.3606
15 U FlatCat No 0.3486
16 U FlatCat Yes 0.3451
17 – (Words) – 0.3303

(b) Finnish.

Rank Method SAR MAP

1 W FlatCat No 0.5057
2 W FlatCat Yes 0.5029
3 SS FlatCat Yes 0.4987
4 – TWOL first – 0.4973
5 SS CRF+FlatCat Yes 0.4912
6 U CatMAP Yes 0.4884
7 U CatMAP No 0.4865
8 SS CRF+FlatCat No 0.4826
9 SS FlatCat No 0.4821
10 – (First 5) – 0.4757
11 SS Baseline – 0.4722
12 S CRF – 0.4660
13 W Baseline – 0.4582
14 U Baseline – 0.4378
15 U FlatCat Yes 0.4349
16 U FlatCat No 0.4334
17 – (Words) – 0.3483

Table 5: Information Retrieval results. Results of the method presented in this paper are hilighted using
boldface. Mean Average Precision is abbreviated as MAP. Short affix removal is abbreviated as SAR.

help disambiguate inflections of different lexemes that have the same surface form but should be analyzed
differently (Can and Manandhar, 2013).

The second direction is removal of the assumption that a morphology consists only of concatenative
processes. Introducing transformations to model allomorphy in a similar manner as Kohonen et al.
(2009) would allow finding the shared abstract morphemes underlying different allomorphs. This could
be especially beneficial in information retrieval and machine translation applications.
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1. Introduction

This article discusses a subfield of morphology learning referred to as morphological
segmentation, in which word forms are segmented into morphs, the surface forms
of morphemes. For example, consider the English word houses with a corresponding
segmentation house+s, where the segment house corresponds to the word stem and the
suffix -s marks the plural number. Although this is a major simplification of the diverse
morphological phenomena present in languages, this type of analysis has nevertheless
been of substantial interest to computational linguistics, beginning with the pioneering
work on morphological learning by Harris (1955). As for automatic language process-
ing, such segmentations have been found useful in a wide range of applications, in-
cluding speech recognition (Hirsimäki et al. 2006; Narasimhan et al. 2014), information
retrieval (Turunen and Kurimo 2011), machine translation (de Gispert et al. 2009; Green
and DeNero 2012), and word representation learning (Luong, Socher, and Manning
2013; Qiu et al. 2014).

Since the early work of Harris (1955), most research on morphological segmentation
has focused on unsupervised learning, which aims to learn the segmentation from a
list of unannotated (unlabeled) word forms. The unsupervised methods are appealing
as they can be applied to any language for which there exists a sufficiently large set
of unannotated words in electronic form. Consequently, such methods provide an inex-
pensive means of acquiring a type of morphological analysis for low-resource languages
as motivated, for example, by Creutz and Lagus (2002). The unsupervised approach and
learning setting has received further popularity because of its close relationship with the
unsupervised word segmentation problem, which has been viewed as a realistic setting
for theoretical study of language acquisition (Brent 1999; Goldwater 2006).

Although development of novel unsupervised model formulations has remained
a topic of active research (Poon, Cherry, and Toutanova 2009; Monson, Hollingshead,
and Roark 2010; Spiegler and Flach 2010; Lee, Haghighi, and Barzilay 2011; Sirts
and Goldwater 2013), recent work has also shown a growing interest towards semi-
supervised learning (Poon, Cherry, and Toutanova 2009; Kohonen, Virpioja, and Lagus
2010; Sirts and Goldwater 2013; Grönroos et al. 2014; Ruokolainen et al. 2014). In general,
the aim of semi-supervised learning is to acquire high-performing models utilizing both
unannotated as well as annotated data (Zhu and Goldberg 2009). In morphological seg-
mentation, the annotated data sets are commonly small, on the order of a few hundred
word forms. We refer to this learning setting with such a small amount of supervision as
minimally supervised learning. In consequence, similar to the unsupervised methods,
the minimally supervised techniques can be seen as a means of acquiring a type of
morphological analysis for under-resourced languages.

Individual articles describing novel methods typically contain a comparative dis-
cussion and empirical evaluation between one or two preceding approaches. Therefore,
what is currently lacking from the literature is a summarizing comparative study on the
published methodology as a whole. Moreover, the literature currently lacks discussion
on error analysis. A study on the error patterns produced by varying approaches could
inform us about their potential utility in different tasks. For example, if an application
requires high-accuracy compound splitting, one could choose to apply a model with a
good compound-splitting capability even if its affix accuracy does not reach state of the
art. The purpose of this work is to address these issues.

Our main contributions are as follows. First, we present a literature survey on
morphological segmentation methods applicable in the minimally supervised learning
setting. The considered methods include unsupervised techniques that learn solely from
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unannotated data, supervised methods that utilize solely annotated data, and semi-
supervised approaches that utilize both unannotated and annotated data. Second, we
perform an extensive empirical evaluation of three diverse method families, including a
detailed error analysis. The approaches considered in this comparison are variants of the
Morfessor algorithm (Creutz and Lagus 2002, 2005, 2007; Kohonen, Virpioja, and Lagus
2010; Grönroos et al. 2014), the adaptor grammar framework (Sirts and Goldwater 2013),
and the conditional random field method (Ruokolainen et al. 2013, 2014). We hope the
presented discussion and empirical evaluation will be of help for future research on the
considered task.

The rest of the article is organized as follows. In Section 2, we provide an overview
of related studies. We then provide a literature survey of published morphological
segmentation methodology in Section 3. Experimental work is presented in Section 4.
Finally, we provide a discussion on potential directions for future work and conclusions
on the current work in Sections 5 and 6, respectively.

2. Related Work

Hammarström and Borin (2011) presented a literature survey on unsupervised learning
of morphology, including methods for learning morphological segmentation. Whereas
the discussion provided by Hammarström and Borin focuses mainly on linguistic
aspects of morphology learning, our work is strongly rooted in machine learning
methodology and empirical evaluation. In addition, whereas Hammarström and Borin
focus entirely on unsupervised learning, our work considers a broader range of learn-
ing paradigms. Therefore, although related, Hammarström and Borin and our current
presentation are complementary in that they have different focus areas.

In addition to the work of Hammarström and Borin (2011), we note that there exists
some established forums on morphology learning. First, we mention the ACL Special
Interest Group on Computational Morphology and Phonology (SIGMORPHON), which
has regularly organized workshops on the subject since 2002. As for specifically mor-
phology learning, we refer to the Morpho Challenge competitions organized since 2005
at Aalto University (formerly known as Helsinki University of Technology). Although
these events have been successful in providing a publication and discussion venue for
researchers interested in the topic, they have not given birth to comparative studies
or survey literature. For example, whereas the publications on the Morpho Challenge
(Kurimo et al. 2009; Kurimo, Virpioja, and Turunen 2010) discuss the competition
results, they nevertheless do not attempt to provide any insight on the fundamental
differences and similarities of the participating methods.

3. Methods

This section provides a detailed review of our methodology. We begin by describing
varying morphological representations, including segmentation, and the minimally
supervised learning setting in Sections 3.1 and 3.2, respectively. We then provide a
literature survey and comparative discussion on a range of methods in Section 3.3.

3.1 On Learning Morphological Representations

In what follows, we briefly characterize morphological segmentation with respect to
alternative morphological representations, particularly the full morphological anal-
ysis. To this end, consider the exemplar segmentations and full analyses for Finnish
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Table 1
Morphological segmentation versus full morphological analysis for exemplar Finnish word
forms. The full analysis consists of word lemma (basic form), part-of-speech, and fine-grained
labels.

word form full analysis segmentation

auto (car) auto+N+Sg+Nom auto
autossa (in car) auto+N+Sg+Ine auto+ssa
autoilta (from cars) auto+N+Pl+Abl auto+i+lta
autoilta (car evening) auto+N+Sg+Nom+# ilta+N+Sg+Nom auto+ilta
maantie (highway) maantie+N+Sg+Nom maantie

maa+N+Sg+Gen+# tie+N+Sg+Nom maa+n+tie
sähköauto (electric car) sähköauto+N+Sg+Nom sähköauto

sähkö+N+Sg+Nom+# auto+N+Sg+Nom sähkö+auto

word forms in Table 1, where the full analyses are provided by the rule-based OMorFi
analyzer developed by Pirinen (2008). Note that it is typical for word forms to have
alternative analyses and/or meanings that cannot be disambiguated without sentential
context. Evidently, the level of detail in the full analysis is substantially higher compared
with the segmentation, as it contains lemmatization as well as morphological tagging,
whereas the segmentation consists of only segment boundary positions. Consequently,
because of this simplification, morphological segmentation has been amenable to un-
supervised machine learning methodology, beginning with the work of Harris (1955).
Meanwhile, the majority of work on learning of full morphological analysis has used
supervised methodology (Chrupala, Dinu, and van Genabith 2008). Lastly, there have
been numerous studies on statistical learning of intermediate forms of segmentation
and full analysis (Lignos 2010; Virpioja, Kohonen, and Lagus 2010) as well as alternative
morphological representations (Yarowsky and Wicentowski 2000; Schone and Jurafsky
2001; Neuvel and Fulop 2002; Johnson and Martin 2003).

As for language processing, learning segmentation can be advantageous com-
pared with learning full analyses. In particular, learning full analysis in a supervised
manner typically requires up to tens of thousands of manually annotated sentences.
A low-cost alternative, therefore, could be to learn morphological segmentation from
unannotated word lists and a handful of annotated examples. Importantly, segmen-
tation analysis has been found useful in a range of applications, such as speech
recognition (Hirsimäki et al. 2006; Narasimhan et al. 2014), information retrieval
(Turunen and Kurimo 2011), machine translation (de Gispert et al. 2009; Green and
DeNero 2012), and word representation learning (Luong, Socher, and Manning 2013;
Qiu et al. 2014).

Despite its intuitiveness, it should be noted that the segmentation representation
is not equally applicable to all languages. To this end, consider the terms isolative
and synthetic languages. In languages with a high amount of isolating morpholog-
ical properties, word forms tend to comprise their own morphemes. Meanwhile, in
heavily synthetic languages, words tend to contain multiple morphemes. Synthetic
languages can be described further according to their agglutinative (concatenative) and
fusional properties. In the former, the morphs tend to have clear boundaries between
them whereas in the latter, the morphs tend to be indistinguishable. For examples
of agglutinative and fusional word formation, consider the English verbs played (past
tense of play) and sang (past tense of sing). Where the previous can be effortlessly
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divided into two segments as play+ed (STEM + PAST TENSE), there are no such distinct
boundaries in the latter. Generally, languages with synthetic properties mix concate-
native and fusional schemes and contain agglutinative properties to varying degrees.
Morphological segmentation can be most naturally applied to highly agglutinative
languages.

Morphologically ambiguous word forms are common especially in highly synthetic
languages. Even without disambiguation based on sentential context, providing all
correct alternatives could be useful for some downstream applications, such as informa-
tion retrieval. Statistical methods can usually provide n-best segmentations; for exam-
ple, Morfessor (Creutz and Lagus 2007) and CRFs (Ruokolainen et al. 2013) by using
n-best Viterbi algorithm and adaptor grammar (Sirts and Goldwater 2013) by collecting
the variations in the posterior distribution samples. Although there is no evident way
to decide the correct number of alternatives for a particular word form, n-best lists
might be useful whenever recall (including the correct answers) is more important than
precision (excluding any incorrect answers). The Morpho Challenge competitions have
allowed providing alternative segmentations for the submitted methods, but no clear
developments have been reported. In fact, even in the reference results based on the gold
standard segmentations, selecting all alternative segmentations has performed slightly
worse in the information retrieval tasks than taking only the first segmentation (Kurimo,
Virpioja, and Turunen 2010).

3.2 Minimally Supervised Learning Settings

In data-driven morphological segmentation, our aim is to learn segmentation models
from training data. Subsequent to training, the models provide segmentations for given
word forms. In the minimally supervised learning setting, as defined here, the models
are estimated from annotated and unannotated word forms. We denote the annotated
data set comprising word forms with their corresponding segmentation as D and the
unannotated data set comprising raw word forms as U . Typically, the raw word forms
can be obtained easily and, consequently, U can contain millions of word forms. Mean-
while, acquiring the annotated data D requires manual labor and, therefore, typically
contains merely hundreds or thousands of word forms. For an illustration of D and U ,
see Table 2.

Table 2
Examples of annotated and unannotated data, D and U , respectively. Typically, U can contain
hundreds of thousands or millions of word forms, whereas D contains merely hundreds or
thousands of word forms.

D U

anarch + ist + s actions
bound + ed bilinguals
conting + ency community
de + fame disorders
entitle + ment equipped
fresh + man faster
. . . . . .
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We consider three machine learning approaches applicable in the minimally su-
pervised learning setting, namely, unsupervised, supervised, and semi-supervised
learning. In unsupervised learning, the segmentation models are trained on solely
unannotated data U . Meanwhile, supervised models are trained from solely the anno-
tated data D. Finally, the aim of semi-supervised learning is to utilize both the available
unannotated and annotated data. Because the semi-supervised approach utilizes the
largest amount of data, it is expected to be most suitable for acquiring high segmenta-
tion accuracy in the minimally supervised learning setting.

Lastly, we note that the unsupervised learning framework can be understood in a
strict or non-strict sense, depending on whether the applied methods are allowed to use
annotated dataD for hyperparameter tuning. Although the term unsupervised learning
itself suggests that such adjusting is infeasible, this type of tuning is nevertheless
common (Creutz et al. 2007; Çöltekin 2010; Spiegler and Flach 2010; Sirts and Goldwater
2013). In addition, the minimally supervised learning setting explicitly assumes a small
amount of available annotated word forms. Consequently, in the remainder of this
article, all discussion on unsupervised methods refers to unsupervised learning in the
non-strict sense.

3.3 Algorithms

Here we provide a literature survey on proposed morphological segmentation methods
applicable in the minimally supervised learning setting. We place particular emphasis
on three method families, namely, the Morfessor algorithm (Creutz and Lagus 2002,
2005, 2007; Kohonen, Virpioja, and Lagus 2010; Grönroos et al. 2014), the adaptor
grammar framework (Sirts and Goldwater 2013), and conditional random fields
(Ruokolainen et al. 2013, 2014). These approaches are the subject of the empirical evalu-
ation presented in Section 4. We present individual method descriptions in Section 3.3.1.
Subsequently, Section 3.3.2 provides a summarizing discussion, the purpose of which
is to gain insight on the fundamental differences and similarities between the varying
approaches.

Morfessor. We begin by describing the original, unsupervised Morfessor method fam-
ily (Creutz and Lagus 2002, 2005, 2007). We then discuss the later, semi-supervised
extensions (Kohonen, Virpioja, and Lagus 2010; Grönroos et al. 2014). In particular,
we review the extension of Morfessor Baseline to semi-supervised learning by using
a weighted generative model (Kohonen, Virpioja, and Lagus 2010), and then discuss
the most recent Morfessor variant, FlatCat (Grönroos et al. 2014). Finally, we discuss
some general results from the literature on semi-supervised learning with generative
models.

The unsupervised Morfessor methods are based on a generative probabilistic
model that generates the observed word forms xi ∈ U by concatenating morphs xi =
mi1 ◦mi2 ◦ · · · ◦min. The morphs are stored in a morph lexicon, which defines the
probability of each morph P(m |θ) given some parameters θ. The Morfessor learning
problem is to find a morph lexicon that strikes an optimal balance between encoding the
observed word forms concisely and, at the same time, having a concise morph lexicon.
To this end, Morfessor utilizes a prior distribution P(θ) over morph lexicons, derived
from the Minimum Description Length principle (Rissanen 1989), that favors lexicons
that contain fewer, shorter morphs. This leads to the following minimization problem
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that seeks to balance the conciseness of the lexicon with the conciseness of the observed
corpus encoded with the lexicon:

θ∗ = arg min
θ

L(θ,U ) = arg min
θ

{− ln P(θ)− ln P(U |θ)} , (1)

The optimization problem in Equation (1) is complicated by the fact that each word
in the corpus U can be generated by different combinations of morphs, defined by
the set of segmentations of that word. This introduces a nuisance parameter z for the
segmentation of each word form, where P(U |θ) =

∑
Z P(U | z,θ)P(z). Because of this

summation, the expression cannot be solved analytically, and iterative optimization
must be used instead.

The unsupervised Morfessor variants differ in the following ways: first, whether
all morphs belong to a single category or the categories PREFIX, STEM, and SUFFIX are
used; secondly, if the model utilizes a lexicon that is flat or hierarchical. In a flat lexicon,
morphs can only be encoded by combining letters, whereas in a hierarchical lexicon
pre-existing morphs can be used for storing longer morphs. Thirdly, the parameter
estimation and inference methods differ. Parameters are estimated using greedy local
search or iterative batch procedures while inference is performed with either Viterbi
decoding or heuristic procedures.

The earliest Morfessor method, referred to as Morfessor Baseline, has been extended
to semi-supervised learning by Kohonen, Virpioja, and Lagus (2010). In contrast, the
later methods, namely, Categories-ML and Categories-MAP, have not been extended,
as they use either hierarchical lexicons or training procedures that make them less
amenable to semi-supervised learning. However, recently Grönroos et al. (2014) pro-
posed a new Morfessor variant that uses morph categories in combination with a flat
lexicon, and can therefore apply the semi-supervised learning technique of Kohonen,
Virpioja, and Lagus.

We begin the description of the semi-supervised extension to Morfessor Baseline
(Creutz and Lagus 2002, 2007) by reviewing its generative model. Morfessor Baseline
utilizes a model in which word forms are generated by concatenating morphs, all
of which belong to the same category. It utilizes a flat morph lexicon P(m |θ) that
is simply a multinomial distribution over morphs m, according to the probabilities
given by the parameter vector θ. The utilized prior penalizes storing long morphs
in the lexicon by assigning each stored morph a cost that depends most strongly on
the morph length in letters. A morph is considered to be stored if the lexicon as-
signs it a nonzero probability. The parameter estimation for θ finds a local optimum
utilizing greedy local search. The search procedure approximates the optimization
problem in Equation (1) by assuming that, for each word form xi, its corresponding
segmentation distribution P(zi) has all its mass concentrated to a single segmentation
zi. The parameter estimation is then performed by locally searching each word for
the segmentation that yields the best value of the cost function in Equation (1). The
process is repeated for all words in random order until convergence. Subsequent to
learning, the method predicts the segmentation of a word form by selecting the seg-
mentation with the most probable sequence of morphs using an extension of the Viterbi
algorithm.

Semi-supervised learning is in principle trivial for a generative model: For the la-
beled word formsD, the segmentation is fixed to its correct value, and for the unlabeled
forms U the standard parameter estimation procedure is applied. However, Kohonen,
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Virpioja, and Lagus (2010) failed to achieve notable improvements in this fashion, and
consequently replaced the minimized function L in Equation (1) with

L(θ, z,U ,D) = − ln P(θ)− α× ln P(U |θ)− β× ln P(D |θ). (2)

Such weighted objectives were used earlier in combination with generative models by,
for example, Nigam et al. (2000). The semi-supervised training procedure then adjusts
the weight values α and β. The absolute values of the weights control the cost of
encoding a morph in the training data with respect to the cost of adding a new morph to
the lexicon, and their ratio controls how much weight is placed on the annotated data
with respect to the unannotated data. When the hyperparameters α and β are fixed,
the lexicon parameters θ can be optimized with the same greedy local search procedure
as in the unsupervised Morfessor Baseline. The weights can then be optimized with a
grid search and by choosing the model with the best evaluation score on a held-out
development set. Although this modification is difficult to justify from the perspective
of generative modeling, Kohonen, Virpioja, and Lagus show that in practice it can
yield performance improvements. From a theoretical point of view, it can be seen
as incorporating discriminative training techniques when working with a generative
model by optimizing for segmentation performance rather than maximum a posteriori
probability. However, only the hyperparameters are optimized in this fashion, whereas
the lexicon parameters are still learned within the generative model framework.

The semi-supervised learning strategy described here is simple to apply if the
objective function in Equation (1) can be factored to parts that encode the morphs
using letters and encode the training corpus using the morphs. For some models of the
Morfessor family this is not possible because of the use of a hierarchical lexicon, where
morphs can be generated from other morphs as well as from individual letters. In par-
ticular, this includes the well-performing Categories-MAP variant (Creutz et al. 2007).
In contrast to Morfessor Baseline, the Categories-MAP and the preceding Categories-
ML method use a hidden Markov model to produce the observed words, where the
states are given by STEM, PREFIX, SUFFIX categories as well as an internal non-morpheme
category. A recent development is Morfessor FlatCat by Grönroos et al. (2014), which
uses the hidden Markov model structure and morph categories in combination with a
flat lexicon, thus allowing semi-supervised learning in the same fashion as for Morfessor
Baseline.

In general, the key idea behind using the weighted objective function in Equation
(2) for semi-supervised learning is that the hyperparameters α and β can be used to
explicitly control the influence of the unannotated data on the learning. Similar semi-
supervised learning strategies have also been used in other problems. For classification
with generative models, it is known that adding unlabeled data to a model trained with
labeled data can degrade performance (Cozman et al. 2003; Cozman and Cohen 2006).
In particular, this can be the case if the generative model does not match the generating
process, something that is difficult to ensure in practice. Recently, this phenomenon was
analyzed in more detail by Fox-Roberts and Rosten (2014), who show that, although the
unlabeled data can introduce a bias, the bias can be removed by optimizing a weighted
likelihood function where the unlabeled data is raised to the power NL

N , where NL is the
number of labeled samples and N is the number of all samples. This corresponds to the
weighting scheme used in Morfessor when setting the ratio α

β = NL
N .
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Adaptor Grammars. Recently, Sirts and Goldwater (2013) presented work on minimally
supervised morphological segmentation using the adaptor grammar (AG) approach
(Johnson, Griffiths, and Goldwater 2006). The AGs are a non-parametric Bayesian mod-
eling framework applicable for learning latent tree structures over an input corpus of
strings. They can be used to define morphological grammars of different complexity,
starting from the simplest grammar where each word is just a sequence of morphs and
extending to more complex grammars, where each word consists, for example, of zero
or more prefixes, a stem, and zero or more suffixes.

The actual forms of the morphs are learned from the data and, subsequent to
learning, used to generate segmentations for new word forms. In this general approach,
AGs are similar to the Morfessor family (Creutz and Lagus 2007). A major difference,
however, is that the morphological grammar is not hard-coded but instead specified as
an input to the algorithm. This allows different grammars to be explored in a flexible
manner. Prior to the work by Sirts and Goldwater, the AGs were successfully applied
in a related task of segmenting utterances into words (Johnson 2008; Johnson and
Goldwater 2009; Johnson and Demuth 2010).

The second major difference between the Morfessor family and the AG framework
is the contrast between the MAP and fully Bayesian estimation approaches. Whereas
the search procedure of the Morfessor method discussed earlier returns a single model
corresponding to the MAP point-estimate, AGs instead operate with full posterior
distributions over all possible models. Because acquiring the posteriors analytically
is intractable, inference is performed utilizing Markov chain Monte Carlo algorithms
to obtain samples from the posterior distributions of interest (Johnson 2008; Johnson
and Goldwater 2009; Johnson and Demuth 2010; Sirts and Goldwater 2013). However,
as sampling-based models are costly to train on large amounts of data, we adopt the
parsing-based method proposed in Sirts and Goldwater (2013) to use the trained AG
model inductively on test data. One of the byproducts of training the AG model is the
posterior grammar, which in addition to all the initial grammar rules, also contains
the cached subtrees learned by the system. This grammar can be used in any standard
parser to obtain segmentations for new data.

The AG framework was originally designed for the unsupervised learning setting,
but Sirts and Goldwater (2013) introduced two approaches for semi-supervised learn-
ing they call the semi-supervised AG and AG Select methods. The semi-supervised
AG approach is an extension to unsupervised AG, in which the annotated data D is
exploited in a straightforward manner by keeping the annotated parts of parse trees
fixed while inferring latent structures for the unannotated parts. For unannotated word
forms, inference is performed on full trees. For example, the grammar may specify that
words are sequences of morphs and each morph is a sequence of submorphs. Typically,
the annotated data only contain morpheme boundaries and submorphs are latent in this
context. In this situation the inference for annotated data is performed over submorph
structures only.

Similarly to unsupervised learning, semi-supervised AG requires the morpholog-
ical grammar to be defined manually. Meanwhile, the AG Select approach aims to
automate the grammar development process by systematically evaluating a range of
grammars and finding the best one. AG Select is trained using unsupervised AG with
an uninformative metagrammar so that the resulting parse-trees contain many possible
segmentation templates. To find out which template works the best for any given
language or data set, each of these templates are evaluated using the annotated data
setD. In this sense, AG Select can be characterized as more of a model selection method
than semi-supervised learning.
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Conditional Random Fields. The Morfessor and AG algorithms discussed earlier, although
different in several respects, operate in a similar manner in that they both learn lexicons.
For Morfessor, the lexicon consists of morphs, whereas for AG, the lexical units are
partial parse-trees. Subsequent to learning, new word forms are segmented either by
generating the most likely morph sequences (Morfessor) or by sampling parse trees
from the posterior distribution (AG). In what follows, we consider a different approach
to segmentation using sequence labeling methodology. The key idea in this approach
is to focus the modeling effort to morph boundaries instead of the whole segments.
Following the presentation of Ruokolainen et al. (2013, 2014), the morphological seg-
mentation task can be represented as a sequence labeling problem by assigning each
character in a word form to one of three classes, namely,

B beginning of a multi-character morph
M middle of a multi-character morph
S single-character morph

Using this label set, one can represent the segmentation of the Finnish word autoilta
(from cars) (auto+i+lta) as

a u t o i l t a
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
B M M M S B M M

Naturally, one can also use other label sets. Essentially, by defining more fine-grained
labels, one captures increasingly eloquent structure but begins to overfit model to the
training data because of increasingly sparser statistics. Subsequent to defining the label
set, one can learn a segmentation model using general sequence labeling methods, such
as the well-known conditional random field (CRF) framework (Lafferty, McCallum, and
Pereira 2001).

Denoting the word form and the corresponding label sequence as x and y, respec-
tively, the CRFs directly model the conditional probability of the segmentation given the
word form, that is, p(y | x; w). The model parameters w are estimated discriminatively
from the annotated data set D using iterative learning algorithms (Lafferty, McCallum,
and Pereira 2001; Collins 2002). Subsequent to estimation, the CRF model segments
word forms x by using maximum a posteriori (MAP) graph inference, that is, solving
an optimization problem

z = arg max
u

p (u | x; w) (3)

using the standard Viterbi search (Lafferty, McCallum, and Pereira 2001).
As it turns out, the CRF model can learn to segment words with a surprisingly high

accuracy from a relatively smallD, that is, without utilizing any of the available unanno-
tated word forms U . Particularly, Ruokolainen et al. (2013) showed that it is sufficient to
use simple left and right substring context features that are naturally accommodated by
the discriminative parameter estimation procedure. Moreover, Ruokolainen et al. (2014)
showed that the CRF-based approach can be successfully extended to semi-supervised
learning settings in a straightforward manner via feature set expansion by utilizing
predictions of unsupervised segmentation algorithms. By utilizing this approach, the
CRF model learns to associate the output of the unsupervised algorithms, such as the
Morfessor and adaptor grammar methods, in relation to the surrounding substring
context.
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Other Work. In addition to the algorithms discussed here, there exist numerous other
segmentation approaches applicable in the minimally supervised learning setting. As
the earliest example of work in this line, consider obtaining segmentations using the
classic letter successor variety (LSV) method of Harris (1955). The LSV method utilizes
the insight that the predictability of successive letters should be high within morph
segments, and low at the boundaries. Consequently, a high variety of letters following
a prefix indicates a high probability of a boundary. Whereas LSV score tracks pre-
dictability given prefixes, the same idea can be utilized for suffixes, providing the letter
predecessor variety (LPV) method. As for the minimally supervised learning setting, the
LSV/LPV method can be used most straightforwardly by counting the LSV/LPV scores
from unannotated data and, subsequently, tuning the necessary threshold values on the
annotated data (Çöltekin 2010). On the other hand, one could also use the LSV/LPV
values as features for a classification model, in which case the threshold values can be
learned discriminatively based on the available annotated data. The latter approach is
essentially realized in the event the LSV/PSV scores are provided for the CRF model
discussed earlier (Ruokolainen et al. 2014).

As for more recent work, we first refer to the generative log-linear model of Poon,
Cherry, and Toutanova (2009). Similarly to the Morfessor model family, this approach
is based on defining a joint probability distribution over the unannotated word forms
U and the corresponding segmentations S. The distribution is log-linear in form and
is denoted as p(U ,S;θ), where θ is the model parameter vector. Again, similarly to
the Morfessor framework, Poon, Cherry, and Toutanova (2009) learn a morph lexicon
that is subsequently used to generate segmentations for new word forms. The learning
is controlled using prior distributions on both corpus and lexicon, which penalize ex-
ceedingly complex morph lexicon (similarly to Morfessor) and exceedingly segmented
corpus, respectively. The log-linear form of p(U ,S;θ) enables the approach to use a wide
range of overlapping features. Particularly, Poon, Cherry, and Toutanova (2009) utilize a
morph-context feature set with individual features defined for each morph and morph
substring contexts. In addition to unsupervised learning, they present experiments in
the semi-supervised setting. Specifically, they accomplish this by fixing the segmen-
tations of annotated words in D, according to their gold standard segmentation. Note,
however, that this approach of extending a generative model does not necessarily utilize
the supervision efficiently, as discussed previously regarding the Morfessor method
family.

Finally, we briefly mention a range of recently published methods (Monson,
Hollingshead, and Roark 2010; Spiegler and Flach 2010; Kılıç and Bozşahin 2012; Eger
2013). The Paramor approach presented by Monson, Hollingshead, and Roark (2010)
defines a rule-based system for unsupervised learning of morphological paradigms.
The Promodes system of Spiegler and Flach (2010) defines a family of generative prob-
abilistic models for recovering segment boundaries in an unsupervised fashion. The
algorithm of Kılıç and Bozşahin (2012) is based on a generative hidden Markov model
(HMM), in which the HMM learns to generate morph sequences for given word forms
in a semi-supervised fashion. Finally, Eger (2013) presents work on fully supervised
segmentation by exhaustive enumeration and a generative Markov model on morphs.
As for the minimally supervised learning setting, the Paramor system learns mainly
from unannotated data U and utilizes annotated dataD to adjust the required threshold
value. The Promodes models can be trained either in an unsupervised manner on U or
in a supervised manner on D. The algorithm of Kılıç and Bozşahin (2012) learns mainly
from unannotated data U and incorporates supervision from the annotated corpus in
the form of manually selected statistics: the inclusion of the statistics yields a large
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improvement in performance. Lastly, in their work with the supervised enumeration
approach, Eger (2013) assumes a large (on the order of tens of thousands) amount of
annotated word forms available for learning. Thus, it is left for future work to determine
if the approach could be applied successfully in the minimally supervised learning
setting.

3.3.2 Summary. Here we aim to summarize the fundamental differences and similarities
between the varying learning approaches discussed in the previous section.

Learning Lexicons versus Detecting Boundaries. We begin by dividing the methods
described earlier into two—lexicon-based (Creutz et al. 2007; Poon, Cherry, and
Toutanova 2009; Monson, Hollingshead, and Roark 2010; Kılıç and Bozşahin 2012;
Eger 2013; Sirts and Goldwater 2013) and boundary detection (Harris 1955; Spiegler
and Flach 2010; Ruokolainen et al. 2013)—categories. In the former, the model learns
lexical units, whereas in the latter the model learns properties of morph boundaries.
For example, in the case of Morfessor (Creutz et al. 2007) the lexical units correspond
to morphs whereas in AGs (Sirts and Goldwater 2013) the units are parse trees. Mean-
while, consider the CRF approach of Ruokolainen et al. (2013) and the classical approach
of Harris (1955), which identify morph boundary positions using substring contexts and
letter successor varieties, respectively. In general, whether it is easier to discover morphs
or morph boundaries is largely an empirical question. So far, only the method of Poon,
Cherry, and Toutanova (2009) has explicitly modeled both a morph lexicon and features
describing character n-grams at morpheme boundaries.

Generative versus Discriminative Learning. The second main distinction divides the
models into generative and discriminative approaches. The generative approaches
(Creutz et al. 2007; Poon, Cherry, and Toutanova 2009; Spiegler and Flach 2010; Monson,
Hollingshead, and Roark 2010; Kılıç and Bozşahin 2012; Eger 2013; Sirts and Goldwater
2013) model the joint distribution of word forms and their corresponding segmenta-
tions, whereas discriminative (Harris 1955; Ruokolainen et al. 2013) approaches directly
estimate a conditional distribution of segmentation given a word form. In other words,
whereas generative methods generate both word forms and segmentations, the dis-
criminative methods generate only segmentations given word forms. The generative
models are naturally applicable for unsupervised learning. Meanwhile, discriminative
modeling always requires some annotated data, thus excluding the possibility of un-
supervised learning. Lastly, it appears that most lexicon-based methods are generative
and most boundary detection methods are discriminative. However, note that this is a
trend rather than a rule, as exemplified by generative boundary detection method of
Spiegler and Flach (2010).

Semi-Supervised Learning Approaches. Both generative and discriminative models can be
extended to utilize annotated as well as unannotated data in a semi-supervised man-
ner. However, the applicable techniques differ. For generative models, semi-supervised
learning is in principle trivial: For the labeled word forms D, the segmentation is fixed
to its correct value, as exemplified by the approaches of Poon, Cherry, and Toutanova
(2009), Spiegler and Flach (2010), and Sirts and Goldwater (2013). On the other hand,
the semi-supervised setting also makes it possible to apply discriminative techniques
to generative models. In particular, model hyperparameters can be selected to optimize
segmentation performance, rather than some generative objective, such as likelihood.
Special cases of hyperparameter selection include the weighted objective function
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(Kohonen, Virpioja, and Lagus 2010), data selection (Virpioja, Kohonen, and Lagus 2011;
Sirts and Goldwater 2013), and grammar template selection (Sirts and Goldwater 2013).
As for the weighted objective function and grammar template selection, the weights
and templates are optimized to maximize segmentation accuracy. Meanwhile, data
selection is based on the observation that omitting some of the training data can improve
segmentation accuracy (Virpioja, Kohonen, and Lagus 2011; Sirts and Goldwater 2013).

For discriminative models, the possibly most straightforward semi-supervised
learning technique is adding features derived from the unlabeled data, as exem-
plified by the CRF approach of Ruokolainen et al. (2014). However, discriminative,
semi-supervised learning is in general a much researched field with numerous diverse
techniques (Zhu and Goldberg 2009). For example, merely for the CRF model alone,
there exist several proposed semi-supervised learning approaches (Jiao et al. 2006;
Mann and McCallum 2008; Wang et al. 2009).

On Local Search. In what follows, we will discuss a potential pitfall of some algorithms
that utilize local search procedures in the parameter estimation process, as exemplified
by the Morfessor model family (Creutz et al. 2007). As discussed in Section 3.3.1, the
Morfessor algorithm finds a local optimum of the objective function using a local search
procedure. This complicates model development because if two model variants perform
differently empirically, it is uncertain whether it is because of a truly better model or
merely better fit with the utilized parameter estimation method, as discussed also by
Goldwater (2006, Section 4.2.2.3). Therefore, in contrast, within the adaptor grammar
framework (Johnson, Griffiths, and Goldwater 2006; Sirts and Goldwater 2013), the
focus has not been on finding a single best model, but rather on finding the posterior
distribution over segmentations of the words. Another approach to the problem of bad
local optima is to start a local search near some known good solution. This approach
is taken in Morfessor FlatCat, for which it was found that initializing the model with
the segmentations produced by the supervised CRF model (with a convex objective
function) yields improved results (Grönroos et al. 2014).

4. Experiments

In this section, we perform an empirical comparison of segmentation algorithms in
the semi-supervised learning setting. The purpose of the presented experiments is to
extend the current literature by considering a wider range of languages compared with
previous work, and by providing an in-depth error analysis.

4.1 Data

We perform the experiments on four languages, namely, English, Estonian, Finnish,
and Turkish. The English, Finnish, and Turkish data are from the Morpho Challenge
2009/2010 data set (Kurimo et al. 2009; Kurimo, Virpioja, and Turunen 2010). The
annotated Estonian data set is acquired from a manually annotated, morphologi-
cally disambiguated corpus,1 and the unannotated word forms are gathered from the
Estonian Reference Corpus (Kaalep et al. 2010). Table 3 shows the total number of
instances available for model estimation and testing.

1 Available at http://www.cl.ut.ee/korpused/morfkorpus/index.php?lang=en.
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Table 3
Number of word types in the data sets.

English Estonian Finnish Turkish

train (unannotated) 384,903 3,908,820 2,206,719 617,298
train (annotated) 1,000 1,000 1,000 1,000
development 694 800 835 763
test 10×1,000 10×1,000 10×1,000 10×1,000

4.2 Compared Algorithms

We present a comparison of the Morfessor family (Creutz and Lagus 2002, 2005, 2007;
Kohonen, Virpioja, and Lagus 2010; Grönroos et al. 2014), the adaptor grammar frame-
work (Sirts and Goldwater 2013), and the conditional random fields (Ruokolainen
et al. 2013, 2014). These methods have freely available implementations for research
purposes.

The log-linear model presented by Poon, Cherry, and Toutanova (2009) is omitted
because it does not have a freely available implementation. However, the model has
been compared in the semi-supervised learning setting on Arabic and Hebrew with
CRFs and Morfessor previously by Ruokolainen et al. (2013). In these experiments, the
model was substantially outperformed on both languages by the CRF method and on
Hebrew by Morfessor.

In order to provide a strong baseline for unsupervised learning results, we per-
formed preliminary experiments using the model presented by Lee, Haghighi, and
Barzilay (2011).2 Their model learns segmentation in an unsupervised manner by
exploiting syntactic context of word forms observed in running text and has shown
promising results for segmentation of Arabic. In practice, we found that when using the
method’s default hyperparameters, it did not yield nearly as good results as the other
unsupervised methods on our studied data sets. Adjusting the hyperparameters turns
out to be complicated by the computational demands of the method. When utilizing the
same computer set-up as for the other models, training the method requires limiting the
maximum word length of analyzed words to 12 in order for the model to fit in memory,
as well as requiring weeks of runtime for a single run. We decided to abandon further
experimentation with the method of Lee, Haghighi, and Barzilay (2011), as optimizing
its hyperparameters was computationally infeasible.

4.3 Evaluation

This section describes the utilized evaluation measures and the performed error
analysis.

4.3.1 Boundary Precision, Recall, and F1-score. The word segmentations are evaluated by
comparison with reference segmentations using boundary precision, boundary recall,
and boundary F1-score. The boundary F1-score, or F1-score for short, equals the har-
monic mean of precision (the percentage of correctly assigned boundaries with respect

2 Implementation is available at http://people.csail.mit.edu/yklee/code.html.
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to all assigned boundaries) and recall (the percentage of correctly assigned boundaries
with respect to the reference boundaries):

Precision =
C(correct)

C(proposed) , (4)

Recall = C(correct)
C(reference) . (5)

We follow Virpioja et al. (2011) and use type-based macro-averages. However, we
handle word forms with alternative analyses in a different fashion. Instead of penalizing
algorithms that propose an incorrect number of alternative analyses, we take the best
match over the alternative reference analyses (separately for precision and recall). This
is because all the methods considered in the experiments provide a single segmentation
per word form.

Throughout the experiments, we establish statistical significance with confidence
level 0.95, according to the standard one-sided Wilcoxon signed-rank test performed on
10 random subsets of 1,000 word forms drawn from the complete test sets (subsets may
contain overlapping word forms).

Because we apply a different treatment of alternative analyses, the results reported
in this article are not directly comparable to the boundary F1-scores reported for the
Morpho Challenge competitions (Kurimo et al. 2009; Kurimo, Virpioja, and Turunen
2010). However, the best boundary F1-scores for all languages reported in Morpho
Challenge have been achieved with the semi-supervised Morfessor Baseline algorithm
(Kohonen, Virpioja, and Lagus 2010), which is included in the current experiments.

4.3.2 Error Analysis. We next discuss the performed error analysis. The purpose of the
error analysis is to gain a more detailed understanding into what kind of errors the
methods make, and how the error types affect the overall F1-scores. To this end, we use
a categorization of morphs into the categories PREFIX, STEM, and SUFFIX, in addition
defining a separate category for DASH. For the English and Finnish sections of the
Morpho Challenge data set, the segmentation gold standard annotation contain addi-
tional information for each morph, such as part-of-speech for stems and morphological
categories for affixes, which allows us to assign each morph into one of the morph
type categories. In some rare cases the tagging is not specific enough, and we choose
to assign the tag UNKNOWN. However, as we are evaluating segmentations, we lack
the morph category information for the proposed analyses. Consequently, we cannot
apply a straightforward category evaluation metric, such as category F1-score. In what
follows, we instead show how to use the categorization on the gold standard side to
characterize the segmentation errors.

We first observe that errors come in two kinds, over-segmentation and under-
segmentation. In over-segmentation, boundaries are incorrectly assigned within morph
segments, and in under-segmentation, the segmentation fails to uncover correct morph
boundaries. For example, consider the English compound word form girlfriend with a
correct analysis girl+friend. Then, an under-segmentation error occurs in the event the
model fails to assign a boundary between the segments girl and friend. Meanwhile,
over-segmentation errors take place if any boundaries are assigned within the two
compound segments girl and friend, such as g+irl or fri+end.

As for the relationship between these two error types and the precision and re-
call measures in Equations (4) and (5), we note that over-segmentation solely affects
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precision, whereas under-segmentation only affects recall. This is evident as the mea-
sures can be written equivalently as:

Precision =
C(proposed)− C(over-segm.)

C(proposed) = 1− C(over-segm.)
C(proposed) , (6)

Recall =
C(reference)− C(under-segm.)

C(reference) = 1− C(under-segm.)
C(reference) . (7)

In the error analysis, we use these equivalent expressions as they allow us to examine
the effect of reduction in precision and recall caused by over-segmentation and under-
segmentation, respectively.

The over-segmentation errors occur when a segment that should remain intact
is split. Thus, these errors can be assigned into categories c according to the morph
tags PREFIX, STEM, SUFFIX, and UNKNOWN. The segments in the category DASH cannot
be segmented and do not, therefore, contribute to over-segmentation errors. We then
decompose the precision and recall reductions in Equations (6) and (7) into those caused
by errors in each category indexed by c and d:

Precision = 1−
∑

c

C(over-segm. (c))
C(proposed) , (8)

Recall = 1−
∑

d

C(under-segm. (d))
C(reference) . (9)

Equation (8) holds because

C(over-segm.)
C(reference) =

∑
c C(over-segm. (c))

C(reference) =
∑

c

C(over-segm. (c))
C(reference) , (10)

where c indexes the over-segmentation error categories. The expression for recall in
Equation (9) can be derived analogously, but it must be noted that the categorization d
by error type differs from that of precision as each under-segmentation error occurs at
a segment boundary, such as STEM-SUFFIX, STEM-STEM, PREFIX-STEM, rather than in the
middle of a segment. To simplify analysis, we have grouped all segment boundaries,
in which either the left or right segment category is DASH into the CONTAINS DASH
category. Boundary types that occur fewer than 100 times in the test data are merged
into the OTHER category.

Table 4 shows the occurrence frequency of each boundary category, averaged
over alternative analyses. Evidently, we expect the total precision scores to be most
influenced by over-segmentation of STEM and SUFFIX segment types because of their
high frequencies. Similarly, the overall recall scores are expected to be most impacted
by under-segmentation of STEM-SUFFIX and SUFFIX-SUFFIX boundaries. Finnish is also
substantially influenced by the STEM-STEM boundary, indicating that Finnish uses com-
pounding frequently.

For simplicity, when calculating the error analysis, we forgo the sampling procedure
of taking 10× 1, 000 word forms from the test set, used for the overall F1-score for
statistical significance testing by Virpioja et al. (2011). Rather, we calculate the error
analysis on the union of these sampled sets. As the sampling procedure may introduce
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Table 4
Absolute and relative frequencies of the boundary categories in the error analysis. The numbers
are averaged over the alternative analyses in the reference annotation.

Category English Finnish

STEM 38,608.8 (82.2%) 72,666.0 (81.3%)
SUFFIX 7,172.9 (15.3%) 15,384.9 (17.2%)
PREFIX 1,152.8 (2.5%) 946.5 (1.1%)
UNKNOWN 54.5 (0.1%) 414.0 (0.5%)

STEM-SUFFIX 5,349.2 (62.6%) 9,889.9 (45.8%)
SUFFIX-SUFFIX 1,481.0 (17.3%) 5,917.5 (27.4%)
STEM-STEM 613.4 (7.2%) 3,538.0 (16.4%)
SUFFIX-STEM n/a n/a 1,501.0 (6.9%)
CONTAINS DASH 458.0 (6.5%) 426.0 (2.0%)
PREFIX-STEM 554.3 (5.4%) 235.2 (1.1%)
OTHER 91.0 (1.1%) 105.4 (0.5%)

the same word form in several samples, the error analysis precisions and recalls are not
necessarily identical to the ones reported for the overall results.

In summary, although we cannot apply category F1-scores, we can instead catego-
rize each error by type. These categories then map directly to either reduced precision
or recall. Interpreting precision and recall requires some care as it is always possible to
reduce over-segmentation errors by segmenting less and, conversely, to reduce under-
segmentation errors by segmenting more. However, if this is taken into account, the
error categorization can be quite informative.

4.4 Model Learning and Implementation Specifics

4.4.1 Morfessor. We use a recently released Python implementation of the Morfessor
method (Virpioja et al. 2013; Smit et al. 2014).3 The package implements both the
unsupervised and semi-supervised Morfessor Baseline (Creutz and Lagus 2002, 2007;
Kohonen, Virpioja, and Lagus 2010). For Morfessor FlatCat we apply the Python imple-
mentation by Grönroos et al. (2014).4

In its original formulation, the unsupervised Morfessor Baseline uses no hyper-
parameters. However, it was found by Virpioja, Kohonen, and Lagus (2011) that perfor-
mance does not improve consitently with growing data because the method segments
less on average for each added training word form. Therefore, we optimize the training
data size by including only the most frequent words in the following sizes: 10k, 20k,
30k, 40k, 50k, 100k, 200k, 400k, . . . , as well as the full set. We then choose the model
yielding highest F1-score on the development set.

As for semi-supervised training of Morfessor Baseline, we perform a grid search on
the development set for the hyperparameter β (see Section 3.3.1). For each value of βwe
use the automatic adaptation of the hyperparameter α provided by the implementation.
The automatic adaptation procedure is applied during model training and is, therefore,
computationally less demanding compared with grid search. Intuitively, the adaptation

3 Available at https://github.com/aalto-speech/morfessor.
4 Available at https://github.com/aalto-speech/flatcat.
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functions as follows. The hyperparameter α affects how much the method segments on
average. Although optimizing it for segmentation performance during training is non-
trivial, one can instead apply the heuristic that the method should neither over-segment
nor under-segment. Therefore, the implementation adjusts α such that the development
set precision and recall become approximately equal.

In the semi-supervised training for Morfessor FlatCat, the segmentations are ini-
tialized to the ones produced by the supervised CRF model trained with the same
amount of labeled training data. As automatic adaptation of the hyperparameter α has
not yet been implemented for Morfessor FlatCat, values for both α and β are found
by a combined grid search on the development set. The computational demands of
the grid search were reduced by using the optimal hyperparameter values for Mor-
fessor Baseline as an initial guess when constructing the grid. We also choose the non-
morpheme removal heuristics used by Morfessor FlatCat for each language separately
using the development set. For English, Estonian, and Finnish the heuristics described
by Grönroos et al. (2014) are beneficial, but they do not fit Turkish morphology as well.
For Turkish we convert non-morphemes into suffixes or stems, without modifying the
segmentation.

4.4.2 Adaptor Grammars. The technical details of the AG model are described by
Johnson, Griffiths, and Goldwater (2006) and the inference details are described by
Johnson, Griffiths, and Goldwater (2007). For unsupervised AG learning, we used the
freely available implementation,5 which was also the basis for the semi-supervised
implementation. Table label resampling was turned on and all hyperparameters were
inferred automatically as described by Johnson and Goldwater (2009). The metagram-
mar for AG Select is the same as described by Sirts and Goldwater (2013). Inductive
learning with the posterior grammar was done with a freely available CKY parser.6 For
both unsupervised and semisupervised AG, we use a three-level collocation-submorph
grammar in which the final segmentation is parsed out as a sequence of Morphs:

Word→ Colloc+

Colloc→Morph+

Morph→ SubMorph+

SubMorph→ Char+

We experimented with two types of grammars, where the Word non-terminal is
either cached or not. These two grammar versions have no difference when trained
transductively. However, when training an inductive model, it may be beneficial to store
the subtrees corresponding to whole words because these trees can be used to parse the
words in the test set that were seen during training with a single rule. All models, both
unsupervised and semi-supervised, are trained on 50k most frequent word types. For
semi-supervised experiments, we upweight the labeled data by an integer number of
times by repeatedly caching the subtrees corresponding to morphemes in the annotated
data. The additional cached subtrees are rooted in the Morph non-terminal. Similarly to
semi-supervised Morfessor, we experimented with initializing the segmentations with

5 Available at http://web.science.mq.edu.au/~mjohnson/Software.htm.
6 Also obtained from http://web.science.mq.edu.au/~mjohnson/Software.htm.
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the output of the supervised CRF model, which in some cases resulted in improved
accuracy over the random initialization. We searched the optimal values for each ex-
periment for the upweighting factor, cached versus non-cached root non-terminal, and
random versus CRF initialization on the development set.

An AG model is stochastic and each segmentation result is just a single sample from
the posterior. A common approach in such a case is to take several samples and report
the average result. Maximum marginal decoding (MMD) (Johnson and Goldwater 2009;
Stallard et al. 2012) that constructs a marginal distribution from several independent
samples and returns their mean value has been shown to improve the sampling-based
models’ results about 1–2 percentage points. Although the AG model uses sampling for
training, the MMD is not applicable here because during test time the segmentations
are obtained using parsing. However, we propose another way of achieving the gain
in a similar range to the MMD. We train five different models and concatenate their
posterior grammars into a single joint grammar, which is then used as the final model to
decode the test data. Our experiments show that the posterior grammar concatentation,
similarly to the MMD, leads to consistent improvements of 1–2 percentage points over
the mean of the individual samples.

4.4.3 CRFs. The utilized Python implementation of the CRF model follows the presen-
tation of Ruokolainen et al. (2013, 2014).7 As for the left and right substring features
incorporated in the model, we include all substrings that occur in the training data. The
maximum substring length and averaged perceptron learning of CRF model parameters
are optimized on the held-out development sets following Ruokolainen et al. (2013). For
semi-supervised learning, we utilize log-normalized successor and predecessor variety
scores and binary Morfessor Baseline and AG features following the presentation of
Ruokolainen et al. (2014). The unsupervised Morfessor Baseline and AG models are
optimized on the development set as described earlier. The successor and predecessor
variety scores are estimated from all the available unannotated word forms apart from
words with a corpus frequency of one. The count cutoff is applied as a means of noise
reduction by removing peripheral phenomena, such as misspellings.

4.5 Results

Here we summarize the results obtained using our experiment set-up. We present over-
all segmentation accuracies and error analysis in Sections 4.5.1 and 4.5.2, respectively.
We then discuss the results in Section 4.6.

4.5.1 Boundary Precisions, Recalls, and F1-scores. In what follows, we first review unsuper-
vised and supervised results and, subsequently, assess the semi-supervised results.

Segmentation accuracies using unsupervised and supervised methods are pre-
sented in Table 5. As for the supervised learning using the CRF model, we report
segmentation accuracies obtained using 100 and 1,000 annotated word forms. Evidently,
utilizing annotated data provides a distinct advantage over learning from unannotated
data. Particularly, learning the supervised CRFs using 1,000 annotated word forms
results in substantially higher segmentation accuracies compared with learning in an
unsupervised manner from hundreds of thousands or millions of word forms. In fact,
using merely 100 annotated instances results in higher accuracies in English and Turkish

7 Available at http://users.ics.aalto.fi/tpruokol/.
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Table 5
Precision, recall, and F1-scores for unsupervised and supervised methods.

Method Train (ann.) Train (unann.) Pre. Rec. F1

English
MORFESSOR BASELINE (USV) 0 384,903 76.3 76.3 76.3
AG (USV) 0 384,903 62.2 84.4 71.7

CRF (SV) 100 0 86.0 72.7 78.8
CRF (SV) 1,000 0 91.6 81.2 86.1
Estonian
MORFESSOR BASELINE (USV) 0 3,908,820 76.4 70.4 73.3
AG (USV) 0 3,908,820 78.4 73.4 75.8

CRF (SV) 100 0 79.2 59.1 67.7
CRF (SV) 1,000 0 88.4 76.7 82.1
Finnish
MORFESSOR BASELINE (USV) 0 2,206,719 70.2 51.9 59.7
AG (USV) 0 2,206,719 68.1 68.1 68.1

CRF (SV) 100 0 73.0 59.4 65.5
CRF (SV) 1,000 0 88.3 79.7 83.8
Turkish
MORFESSOR BASELINE (USV) 0 617,298 67.9 65.8 66.8
AG (USV) 0 617,298 72.7 76.5 74.6

CRF (SV) 100 0 84.6 71.8 77.7
CRF (SV) 1,000 0 90.0 87.3 88.6
The columns titled Train (unann.) denote the number of unannotated word forms utilized in
learning. The columns titled Train (ann.) denote the number of annotated word forms.

compared with the unsupervised methods. The balance between precision and recall
can be analyzed to assess how well the different methods are tuned to the amount of
segmentation present in the gold standard. As discussed in Section 4.3.2, high precision
in combination with low recall indicates under-segmentation, whereas high recall and
low precision indicates over-segmentation. Morfessor appears to favor precision over
recall (see Finnish) in the event a trade-off takes place. In contrast, the AG heavily favors
recall (see English). Meanwhile, the supervised CRF model consistently prefers higher
precision over recall.

These unsupervised and supervised learning results utilize the available data only
partially. Thus, we next discuss results obtained using semi-supervised learning—that
is, when utilizing all available annotated and unannotated word forms. The obtained
segmentation accuracies are presented in Table 6. We summarize the results as follows.
First, the semi-supervised CRF approach CRF (SSV) yielded highest segmentation ac-
curacies for all considered languages and data set sizes. The improvements over other
models are statistically significant. Compared with the supervised CRF model, the semi-
supervised extension successfully increases the recall while maintaining the high preci-
sion. As for the Morfessor family, MORF.FC (SSV) yields significantly higher F1-scores
compared with MORF.BL (SSV) on all languages. However, we found that without the
CRF initialization of MORF.FC (SSV), the performance gap decreases substantially (cf.
similar results reported by Grönroos et al. [2014]). On the other hand, the variants
appear to behave in a similar manner in that, in the majority of cases, both approaches
increase the obtained precision and recall in a balanced manner compared with the
unsupervised approach MORF. BL (USV). Meanwhile, the AG variants AG (SSV) and
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Table 6
Precision, recall, and F1-scores for semi-supervised methods.

Method Train (ann.) Train (unann.) Pre. Rec. F1

English
MORFESSOR BASELINE (SSV) 100 384,903 81.7 82.8 82.2
MORFESSOR FLATCAT (SSV) 100 384,903 83.6 83.0 83.3
AG (SSV) 100 384,903 69.0 85.8 76.5
AG SELECT (SSV) 100 384,903 75.9 79.4 77.6
CRF (SSV) 100 384,903 87.6 81.0 84.2

MORFESSOR BASELINE (SSV) 1,000 384,903 84.4 83.9 84.1
MORFESSOR FLATCAT (SSV) 1,000 384,903 86.9 85.2 86.0
AG (SSV) 1,000 384,903 69.8 87.1 77.5
AG SELECT (SSV) 1,000 384,903 76.7 82.3 79.4
CRF (SSV) 1,000 384,903 89.3 87.0 88.1
Estonian
MORFESSOR BASELINE (SSV) 100 3,908,820 77.0 76.1 76.5
MORFESSOR FLATCAT (SSV) 100 3,908,820 81.8 74.5 77.9
AG (SSV) 100 3,908,820 71.8 75.5 73.6
AG SELECT (SSV) 100 3,908,820 60.9 90.4 72.8
CRF (SSV) 100 3,908,820 81.5 82.1 81.8

MORFESSOR BASELINE (SSV) 1,000 3,908,820 80.6 80.7 80.7
MORFESSOR FLATCAT (SSV) 1,000 3,908,820 84.7 82.0 83.3
AG (SSV) 1,000 3,908,820 67.1 88.8 76.4
AG SELECT (SSV) 1,000 3,908,820 62.8 90.3 74.1
CRF (SSV) 1,000 3,908,820 90.2 86.3 88.2
Finnish
MORFESSOR BASELINE (SSV) 100 2,206,719 69.8 70.8 70.3
MORFESSOR FLATCAT (SSV) 100 2,206,719 77.6 73.6 75.5
AG (SSV) 100 2,206,719 65.5 70.5 67.9
AG SELECT (SSV) 100 2,206,719 66.8 73.6 70.0
CRF (SSV) 100 2,206,719 80.0 77.4 78.7

MORFESSOR BASELINE (SSV) 1,000 2,206,719 76.0 78.0 77.0
MORFESSOR FLATCAT (SSV) 1,000 2,206,719 81.6 80.2 80.9
AG (SSV) 1,000 2,206,719 69.7 77.6 73.4
AG SELECT (SSV) 1,000 2,206,719 69.4 74.3 71.8
CRF (SSV) 1,000 2,206,719 89.3 87.9 88.6
Turkish
MORFESSOR BASELINE (SSV) 100 617,298 76.6 80.5 78.5
MORFESSOR FLATCAT (SSV) 100 617,298 80.2 83.9 82.0
AG (SSV) 100 617,298 74.1 82.8 78.2
AG SELECT (SSV) 100 617,298 69.0 82.3 75.0
CRF (SSV) 100 617,298 81.3 86.0 83.5

MORFESSOR BASELINE (SSV) 1,000 617,298 85.1 89.4 87.2
MORFESSOR FLATCAT (SSV) 1,000 617,298 84.9 92.2 88.4
AG (SSV) 1,000 617,298 77.0 90.9 83.4
AG SELECT (SSV) 1,000 617,298 70.5 80.4 75.1
CRF (SSV) 1,000 617,298 89.3 92.0 90.7
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AG SELECT (SSV) heavily favor recall over precision, indicating over-segmentation.8

Lastly, in contrast with the unsupervised learning results, in the semi-supervised setting
the AG framework is significantly outperformed by the Morfessor variants.

4.5.2 Error Analysis. Next, we examine how different error types contribute to the ob-
tained precision and recall measures, and, consequently, the overall F1-scores. To this
end, we discuss the error analyses for English and Finnish presented in Tables 7 and 8,
respectively.

Baselines. The first two lines in Tables 7 and 8 present the baseline models WORDS and
LETTERS. The WORDS model corresponds to an approach in which no segmentation is
performed, that is, all the word forms are kept intact. The LETTERS approach assigns a
segment boundary between all adjacent letters. These approaches maximize precision
(WORDS) and recall (LETTERS) at the cost of the other. In other words, no model can
produce more over-segmentation errors compared with LETTERS, and no model can
produce more under-segmentation errors compared with WORDS.9

Given the baseline results, we observe that the overall precision scores are most
influenced by over-segmentation of STEM and SUFFIX segment types because of their
high frequencies. Similarly, the overall recall scores are most impacted by under-
segmentation of STEM-SUFFIX and SUFFIX-SUFFIX boundaries. Finnish recall is also
substantially influenced by the STEM-STEM boundary, indicating that Finnish uses
compounding frequently.

Morfessor. Similarly to the baseline (WORDS and LETTERS) results, the majority of over-
segmentation errors yielded by the Morfessor variants take place within the STEM and
SUFFIX segments, and most under-segmentation errors occur at the STEM-SUFFIX and
SUFFIX-SUFFIX boundaries. When shifting from unsupervised learning using MORF.BL
(USV) to semi-supervised learning using MORF.BL (SSV) and MORF.FC (SSV), the over-
segmentation problems are alleviated rather substantially, resulting in higher over-
all precision scores. For example, consider the word form countermanded, for which
MORF.BL (SSV) assigns the correct segmentation countermand+ed, but which is severely
oversegmented by MORF.BL (USV) as counter+man+d+ed. One also observes a dramatic
increase in the overall recall scores, indicating a smaller amount of under-segmentation
taking place. For example, consider the word form products, for which MORF.BL (SSV)
assigns the correct segmentation product+s, but for which MORF.BL (USV) assigns no
boundaries. However, the under-segmentation errors do not decrease consistently:
Although the STEM-SUFFIX and SUFFIX-SUFFIX errors are decreased substantially, one
additionally observes a decline or no change in the model’s ability to uncover STEM-
STEM and PREFIX-STEM boundaries.

8 Generally, in the presence of annotated training data, under-segmentation and over-segmentation can be
avoided by explicitly tuning the average level of segmentation. Such tuning is performed for Morfessor
with the weighted objective function and for AG by choosing the level in the parse tree from which to
extract the segmentations. By default, the AG segmentations were extracted from the Morph level as this
gave the highest score on the development set. However, the Estonian segmentations are extracted from
the Colloc level, which also explains why in the Estonian case the precision is higher than recall. These
results suggest that AG (SSV) may benefit from yet another layer in the grammar, which would help to
learn a better balance between precision and recall.

9 Intuitively, WORDS should yield zero recall. However, when applying macro averaging, a word having a
gold standard analysis with no boundaries yields a zero denominator and is therefore undefined. To
correct for this, we interpret such words as having recall 1, which explains the non-zero recall for WORDS.
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Table 7
Error analysis for English.

Over-Segmentation Under-Segmentation

Method ST
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WORDS 0.0 0.0 0.0 0.0 100.0 55.1 8.6 5.9 4.4 2.5 0.6 23.1
LETTERS 71.1 11.8 1.7 0.3 15.1 0.0 0.0 0.0 0.0 0.0 0.0 100.0

MORF.BL (USV) 20.6 2.9 0.0 0.1 76.4 17.0 4.7 0.6 1.1 0.0 0.2 76.4
MORF.BL (SSV) 14.3 1.3 0.1 0.0 84.4 9.8 0.6 2.8 2.1 0.0 0.4 84.3
MORF.FC (SSV) 11.2 1.7 0.0 0.1 87.1 8.6 0.5 2.2 2.5 0.1 0.4 85.5
AG (USV) 31.8 5.8 0.1 0.0 62.3 10.6 3.5 0.1 0.7 0.2 0.2 84.7
AG (SSV) 27.8 2.1 0.1 0.1 70.0 10.1 1.4 0.2 0.6 0.2 0.2 87.3
AG SELECT (SSV) 18.4 4.8 0.0 0.1 76.6 8.2 1.4 2.2 4.1 1.5 0.4 82.2
CRF (SV) 7.3 0.9 0.1 0.0 91.8 10.4 0.5 4.2 2.9 0.1 0.4 81.5
CRF (SSV) 9.6 0.8 0.0 0.1 89.5 8.4 0.5 1.4 1.9 0.0 0.4 87.4

Over-segmentation and under-segmentation errors reduce precision and recall, respectively. For
example, the total precision of MORF. BL (USV) is obtained as 100.0−20.6−2.9−0.0−0.1 = 76.4.
The lines MORF. BL (USV), MORF. BL (SSV), and MORF. FC (SSV) correspond to the unsupervised
Morfessor Baseline, semi-supervised Morfessor Baseline, and semi-supervised Morfessor FlatCat
models, respectively.

Table 8
Error analysis for Finnish.

Over-Segmentation Under-Segmentation

Method ST
E

M

SU
FF

IX

P
R

E
FI

X

U
N

K
N

O
W

N

P
R

E
/T

O
T

A
L

ST
E

M
-S

U
FF

IX

SU
FF

IX
-S

U
FF

IX

ST
E

M
-S

T
E

M

SU
FF

IX
-S

T
E

M

C
O

N
TA

IN
S

D
A

SH

P
R

E
FI

X
-S

T
E

M

O
T

H
E

R

R
E

C
/T

O
T

A
L

WORDS 0.0 0.0 0.0 0.0 100.0 49.2 21.8 17.2 4.8 1.4 1.0 0.6 4.1
LETTERS 65.2 13.8 0.7 0.6 19.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

MORF.BL (USV) 26.6 3.4 0.0 0.2 69.7 28.8 17.1 1.7 0.5 0.0 0.1 0.2 51.6
MORF.BL (SSV) 20.8 2.9 0.0 0.2 76.1 13.6 5.9 1.9 0.5 0.0 0.1 0.1 78.0
MORF.FC (SSV) 15.3 2.9 0.0 0.1 81.7 12.2 5.2 1.5 0.6 0.1 0.1 0.1 80.2
AG (USV) 28.3 3.3 0.1 0.2 68.1 19.0 11.5 0.7 0.2 0.3 0.0 0.2 68.1
AG (SSV) 27.9 2.1 0.1 0.2 69.7 14.7 6.5 0.7 0.2 0.1 0.1 0.1 77.6
AG SELECT (SSV) 24.2 6.1 0.0 0.1 69.5 13.2 7.8 2.4 1.1 0.8 0.2 0.1 74.4
CRF (SV) 9.3 2.3 0.0 0.0 88.3 10.7 2.2 5.8 1.1 0.1 0.3 0.2 79.7
CRF (SSV) 9.2 1.4 0.0 0.1 89.3 8.0 2.3 1.2 0.4 0.1 0.1 0.2 87.8

Over-segmentation and under-segmentation errors reduce precision and recall, respectively. The
lines MORF. BL (USV), MORF. BL (SSV), and MORF. FC (SSV) correspond to the unsupervised
Morfessor Baseline, the semi-supervised Morfessor Baseline, and semi-supervised Morfessor
FlatCat models, respectively.
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Adaptor Grammars. Similarly to the baseline and Morfessor results, the majority of
over-segmentation errors yielded by the AG variants occur within the STEM and
SUFFIX segments. Compared with the unsupervised AG (USV) approach, the first
semi-supervised extension AG (SSV) manages to reduce over-segmentation of the STEM
segments slightly and SUFFIX segments substantially, thus resulting in overall higher
precision. Meanwhile, the second extension AG SELECT (SSV) also results in overall
higher precision by reducing over-segmentation of STEM segments substantially—
although, for Finnish, SUFFIX is oversegmented compared with AG SELECT (USV).
On the other hand, whereas both AG (SSV) and AG SELECT (SSV) improve recall
on Finnish compared to AG (USV), only AG (SSV) succeeds in improving recall for
English. This is because the AG SELECT (SSV) variant decreases the model’s ability
to capture other than STEM-SUFFIX and SUFFIX-SUFFIX boundaries compared with the
unsupervised AG (USV) approach.

Conditional Random Fields. In contrast to the Morfessor and AG frameworks, the error
patterns produced by the CRF approach do not directly follow the baseline approaches.
Particularly, we note that the supervised CRF (SV) approach successfully captures
SUFFIX-SUFFIX boundaries and fails to find STEM-STEM boundaries—that is, behaves in
an opposite manner compared with the baseline results. CRF (SV) also under-segments
the less-frequent PREFIX-STEM and STEM-SUFFIX boundaries for English and Finnish,
respectively. Meanwhile, the semi-supervised extension CRF (SSV) alleviates the prob-
lem of finding STEM-STEM boundaries substantially, resulting in improvement in overall
recall. For example, CRF (SSV) correctly segments compound forms rainstorm and wind-
pipe as rain+storm and wind+pipe, whereas CRF (SV) incorrectly assigns no segmentation
boundaries to either of these forms. Note that improving recall means that CRF (SSV)
is required to segment more compared with CRF (SV). For English, this increased seg-
mentation results in a slight increase in over-segmentation of STEM—that is, the model
trades off the increase in recall for precision. For example, whereas CRF (SV) correctly
segments ledgers as ledger+s, CRF (SSV) yields an incorrect segmentation led+ger+s.

4.6 Discussion

When increasing the amount of data utilized for learning—that is, when shifting from
fully unsupervised or supervised learning to semi-supervised learning—we naturally
expect the segmentation method families to improve their performance measured using
the F1-score. Indeed, as shown in Tables 5 and 6, this improvement takes place within
all considered approaches. In some cases, as exemplified by the CRF model on English,
achieving a higher F1-score may require a trade-off between precision and recall—that
is, the model lowers precision somewhat to gain recall (or vice versa). However, by
examining the error analyses in Tables 7 and 8, we also observe the occurrence of a
second kind of trade-off, in which the semi-supervised Morfessor and AG approaches
trade off under-segmentation errors to other under-segmentation errors. Particularly,
although the STEM-SUFFIX and SUFFIX-SUFFIX boundary recall errors are decreased, one
also observes an increase in the errors at STEM-STEM and PREFIX-STEM boundaries.
This type of behavior indicates an inherent inefficiency in the models’ ability to utilize
increasing amounts of data.

Next, we discuss potential explanations for the empirical success of the discrimina-
tively trained CRF approach. First, discriminative training has the advantage of directly
optimizing segmentation accuracy with few assumptions about the data generating pro-
cess. Meanwhile, generative models can be expected to perform well only if the model
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definition matches the data-generating process adequately. In general, discriminative
approaches should generalize well under the condition that a sufficient amount of train-
ing data is available. Given the empirical results, this condition appears to be fulfilled
for morphological segmentation in the minimally supervised setting. Second, the CRFs
aim to detect boundary positions based on rich features describing substring contexts.
Because the substrings are more frequent than lexical units, their use enables more
efficient utilization of sparse data. For example, consider a training data that consists
of a single labeled word form kato+lla (on roof ). When segmenting an unseen word form
matolle (onto rug), with the correct segmentation mato+lle, the CRFs can utilize the famil-
iar left and right substrings ato and ll, respectively. In contrast, a lexicon-based model
has a lexicon of two morphs {kato, lla}, neither of which match any substring of matolle.

Finally, we discuss how the varying approaches differ when learning to split affixes
and compounds. To this end we first point out that, in the examined English and
Finnish corpora, the suffix class is closed and has only a small number of morphemes
compared with the open prefix and stem categories. In consequence, a large coverage
of suffixes should be achievable already with a relatively small annotated data set. This
observation is supported by the evident success of the fully supervised CRF method
in learning suffix splitting for both considered languages. On the other hand, although
more efficient at learning suffix splitting, the supervised CRF approach is apparently
poor at detecting compound boundaries. Intuitively, learning compound splitting in a
supervised manner seems infeasible because the majority of stem forms are simply not
present in the available small annotated data set. Meanwhile, the semi-supervised CRF
extension and the generative Morfessor and AG families, which do utilize the large
unannotated word lists, capture the compound boundaries with an appealing high ac-
curacy. This result again supports the intuition that in order to learn the open categories,
one is required to utilize large amounts of word forms for learning. However, it appears
that the necessary information can be extracted from unannotated word forms.

5. Future Work

In this section, we discuss our findings on potentially fruitful directions for future
research.

5.1 On Improving Existing Approaches

Interestingly, the CRF-based segmentation method achieves its success using mini-
malistic, language-independent features with a simple, feature-based, semi-supervised
learning extension. Therefore, it seems plausible that one could boost the accuracy fur-
ther by designing richer, language-dependent feature extraction schemes. For example,
one could potentially exploit features capturing vowel harmony present in Finnish,
Estonian, and Turkish. As for semi-supervised learning, one can utilize unannotated
word lists in a straightforward manner by using the feature set expansion approach as
discussed by Ruokolainen et al. (2014). Similar expansion schemes for CRFs have also
been successfully applied in the related tasks of Chinese word segmentation (Sun and
Xu 2011; Wang et al. 2011) and chunking (Turian, Ratinov, and Bengio 2010). Neverthe-
less, there exist numerous other approaches proposed for semi-supervised learning of
CRFs (Jiao et al. 2006; Mann and McCallum 2008; Wang et al. 2009) that could poten-
tially provide an advantage over the feature-based, semi-supervised learning approach.
Naturally, one could also examine utilizing these techniques simultaneously with the
expanded feature sets.
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As discussed in Section 3.3, it is possible for the generative models to utilize an-
notated data in a straightforward manner by fixing samples to their true values. This
approach was taken by Poon, Cherry, and Toutanova (2009), Spiegler and Flach (2010),
and Sirts and Goldwater (2013). On the other hand, as discussed in Section 3.3.1, for
the Morfessor family the fixing approach was outperformed by the weighted objective
function (Kohonen, Virpioja, and Lagus 2010). It has been shown that the weighting
can compensate for a mismatch between the model and the data generating process
(Cozman et al. 2003; Cozman and Cohen 2006; Fox-Roberts and Rosten 2014). Therefore,
it would appear to be advantageous to study weighting schemes in combination with
all the discussed generative models.

5.2 On Potential Novel Approaches

Based on the literature survey presented in Section 3.3.2, one can observe that there
exists substantial work on generative lexicon-based approaches and methods based
on discriminative boundary detection. In contrast, there exists little to no research on
models utilizing lexicons and discriminative learning or generative boundary-detection
approaches. In addition, as mentioned in Section 3.3.2, so far there has been little work
discussing a combination of lexicon-based and boundary detection approaches. It could
be fruitful to explore these modeling aspects further in the future.

6. Conclusions

We presented a comparative study on data-driven morphological segmentation in a
minimally supervised learning setting. In this setting the segmentation models are
estimated based on a small amount of manually annotated word forms and a large set
of unannotated word forms. In addition to providing a literature survey on published
methods, we presented an in-depth empirical comparison on three diverse model fam-
ilies. The purpose of this work is to extend the existing literature with a summarizing
study on the published methodology as a whole.

Based on the literature survey, we concluded that the existing methodology con-
tains substantial work on generative lexicon-based approaches and methods based on
discriminative boundary detection. As for which approach has been more successful,
both the previous work and the empirical evaluation presented here strongly imply that
the current state of the art is yielded by the discriminative boundary detection method-
ology. In general, our analysis suggested that the models based on generative lexicon
learning are inefficient at utilizing growing amounts of available data. Meanwhile, the
studied discriminative boundary detection method based on the CRF framework was
successful in gaining consistent reduction in all error types, given increasing amounts of
data. Lastly, there exists little to no research on models utilizing lexicons and discrimi-
native learning or generative boundary-detection approaches. Studying these directions
could be of interest in future work.
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Semi-supervised morpheme segmentation
without morphological analysis. In

Proceedings of the LREC 2012 Workshop
on Language Resources and Technologies
for Turkic Languages, pages 52–56,
Istanbul.

Kohonen, Oskar, Sami Virpioja, and Krista
Lagus. 2010. Semi-supervised learning of
concatenative morphology. In Proceedings
of the 11th Meeting of the ACL Special Interest
Group on Computational Morphology and
Phonology (SIGMORPHON 2010),
pages 78–86, Uppsala.

Kurimo, Mikko, Sami Virpioja, and Ville
Turunen. 2010. Overview and results of
Morpho Challenge 2010. In Proceedings of
the Morpho Challenge 2010 Workshop,
pages 7–24, Espoo.

Kurimo, Mikko, Sami Virpioja, Ville
Turunen, Graeme W. Blackwood, and
William Byrne. 2009. Overview and results
of Morpho Challenge 2009. In Working
Notes for the CLEF 2009 Workshop,
pages 578–597, Corfu.

Lafferty, John, Andrew McCallum, and
Fernando C. N. Pereira. 2001. Conditional
random fields: Probabilistic models for
segmenting and labeling sequence data. In
Proceedings of the 18th International
Conference on Machine Learning (ICML
2001), pages 282–289, Williamstown, MA.

Lee, Yoong Keok, Aria Haghighi, and Regina
Barzilay. 2011. Modeling syntactic context
improves morphological segmentation. In
Proceedings of the Fifteenth Conference on
Computational Natural Language Learning
(CoNLL 2011), pages 1–9, Portland, OR.

Lignos, Constantine. 2010. Learning from
unseen data. In Proceedings of the Morpho
Challenge 2010 Workshop, pages 35–38,
Helsinki.

Luong, Minh-Thang, Richard Socher, and
Christopher D. Manning. 2013. Better
word representations with recursive
neural networks for morphology. In
Proceedings of the 17th Conference on
Computational Natural Language Learning
(CoNLL 2013), pages 29–37, Sofia.

Mann, G. and A. McCallum. 2008.
Generalized expectation criteria for
semi-supervised learning of conditional
random fields. In Proceedings of the 46th
Annual Meeting of Association for
Computational Linguistics: Human Language
Technologies (ACL HLT 2008),
pages 870–878, Columbus, OH.

Monson, Christian, Kristy Hollingshead,
and Brian Roark. 2010. Simulating
morphological analyzers with stochastic
taggers for confidence estimation. In
Multilingual Information Access Evaluation

118



Ruokolainen et al. Minimally Supervised Morphological Segmentation

I - Text Retrieval Experiments, volume
6241 of Lecture Notes in Computer Science.

Narasimhan, Karthik, Damianos Karakos,
Richard Schwartz, Stavros Tsakalidis,
and Regina Barzilay. 2014. Morphological
segmentation for keyword spotting.
In Proceedings of the 2014 Conference
on Empirical Methods in Natural
Language Processing (EMNLP 2014),
pages 880–885, Doha.

Neuvel, Sylvain and Sean A. Fulop. 2002.
Unsupervised learning of morphology
without morphemes. In Proceedings
of the 6th Workshop of the ACL Special
Interest Group in Computational
Phonology (SIGPHON 2002),
pages 31–40, Philadelphia, PA.

Nigam, Kamal, Andrew Kachites
McCallum, Sebastian Thrun, and
Tom Mitchell. 2000. Text classification from
labeled and unlabeled documents using
EM. Machine Learning, 39(2–3):103–134.

Pirinen, Tommi. 2008. Automatic finite
state morphological analysis
of Finnish language using open
source resources [in Finnish].
Master’s thesis, University of Helsinki.

Poon, Hoifung, Colin Cherry, and
Kristina Toutanova. 2009. Unsupervised
morphological segmentation with
log-linear models. In Proceedings
of Human Language Technologies:
The 2009 Annual Conference of the
North American Chapter of the Association
for Computational Linguistics (NAACL
HLT 2009), pages 209–217, Boulder, CO.

Qiu, Siyu, Qing Cui, Jiang Bian, Bin Gao,
and Tie-Yan Liu. 2014. Co-learning
of word representations and morpheme
representations. In Proceedings of the 25th
International Conference on Computational
Linguistics (COLING 2014), pages 141–150,
Dublin.

Rissanen, Jorma. 1989. Stochastic Complexity
in Statistical Inquiry, volume 15. World
Scientific Series in Computer Science,
Singapore.

Ruokolainen, Teemu, Oskar Kohonen,
Sami Virpioja, and Mikko Kurimo.
2013. Supervised morphological
segmentation in a low-resource
learning setting using conditional
random fields. In Proceedings of
the 17th Conference on Computational
Natural Language Learning (CoNLL 2013),
pages 29–37, Sofia.

Ruokolainen, Teemu, Oskar Kohonen, Sami
Virpioja, and Mikko Kurimo. 2014.
Painless semi-supervised morphological

segmentation using conditional random
fields. In Proceedings of the 14th Conference
of the European Chapter of the Association
for Computational Linguistics (EACL 2014),
pages 84–89. Gothenburg.

Schone, Patrick and Daniel Jurafsky.
2001. Knowledge-free induction of
inflectional morphologies. In Proceedings
of the 2nd Meeting of the North American
Chapter of the Association for Computational
Linguistics on Language Technologies
(NAACL 2001), pages 1–9, Pittsburgh,
PA.

Sirts, Kairit and Sharon Goldwater. 2013.
Minimally-supervised morphological
segmentation using adaptor grammars.
Transactions of the Association for
Computational Linguistics, 1(May):255–266.

Smit, Peter, Sami Virpioja, Stig-Arne
Grönroos, and Mikko Kurimo. 2014.
Morfessor 2.0: Toolkit for statistical
morphological segmentation. In
Proceedings of the Demonstrations at the
14th Conference of the European Chapter of
the Association for Computational Linguistics
(EACL 2014), pages 21–24, Gothenburg.

Spiegler, Sebastian and Peter A. Flach.
2010. Enhanced word decomposition by
calibrating the decision threshold of
probabilistic models and using a model
ensemble. In Proceedings of the 48th Annual
Meeting of the Association for Computational
Linguistics (ACL 2010), pages 375–383,
Uppsala.

Stallard, David, Jacob Devlin, Michael
Kayser, Yoong Keok Lee, and Regina
Barzilay. 2012. Unsupervised morphology
rivals supervised morphology for Arabic
MT. In Proceedings of the 50th Annual
Meeting of the Association for Computational
Linguistics (ACL 2012), pages 322–327,
Jeju Island.

Sun, Weiwei and Jia Xu. 2011.
Enhancing Chinese word segmentation
using unlabeled data. In Proceedings
of the 2011 Conference on Empirical
Methods in Natural Language Processing
(EMNLP 2011), pages 970–979, Edinburgh.

Turian, Joseph, Lev Ratinov, and Yoshua
Bengio. 2010. Word representations:
A simple and general method for
semi-supervised learning. In Proceedings of
the 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010),
pages 384–394, Uppsala.

Turunen, Ville and Mikko Kurimo.
2011. Speech retrieval from unsegmented
Finnish audio using statistical morpheme-
like units for segmentation, recognition,

119



Computational Linguistics Volume 42, Number 1

and retrieval. ACM Transactions on Speech
and Language Processing, 8(1):1:1–1:25.

Virpioja, Sami, Oskar Kohonen,
and Krista Lagus. 2010. Unsupervised
morpheme analysis with Allomorfessor.
In Multilingual Information Access
Evaluation I. Text Retrieval Experiments: 10th
Workshop of the Cross-Language Evaluation
Forum (CLEF 2009), pages 609–616, Corfu.

Virpioja, Sami, Oskar Kohonen,
and Krista Lagus. 2011. Evaluating the
effect of word frequencies in a probabilistic
generative model of morphology.
In Proceedings of the 18th Nordic
Conference of Computational Linguistics
(NODALIDA 2011), pages 230–237, Riga.

Virpioja, Sami, Peter Smit, Stig-Arne
Grönroos, and Mikko Kurimo. 2013.
Morfessor 2.0: Python implementation and
extensions for Morfessor Baseline. Report
25/2013 in Aalto University publication
series SCIENCE + TECHNOLOGY,
Department of Signal Processing
and Acoustics, Aalto University,
Helsinki, Finland.

Virpioja, Sami, Ville Turunen, Sebastian
Spiegler, Oskar Kohonen, and Mikko
Kurimo. 2011. Empirical comparison
of evaluation methods for unsupervised

learning of morphology. Traitement
Automatique des Langues, 52(2):45–90.

Wang, Yang, Gholamreza Haffari, Shaojun
Wang, and Greg Mori. 2009. A rate
distortion approach for semi-supervised
conditional random fields. In Advances
in Neural Information Processing Systems
(NIPS), pages 2008–2016, Vancouver.

Wang, Yiou, Yoshimasa Tsuruoka Jun’ichi
Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro
Torisawa. 2011. Improving Chinese word
segmentation and POS tagging
with semi-supervised methods using large
auto-analyzed data. In Proceedings
of the 5th International Joint Conference
on Natural Language Processing,
pages 309–317, Chiang Mai.

Yarowsky, David and Richard Wicentowski.
2000. Minimally supervised morphological
analysis by multimodal alignment.
In Proceedings of the 38th Meeting of
the Association for Computational Linguistics
(ACL 2000), pages 207–216, Hong Kong.

Zhu, Xiaojin and Andrew B. Goldberg.
2009. Introduction to semi-supervised
learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning,
3(1):1–130.

120



Publication III

Stig-Arne Grönroos, Katri Hiovain, Peter Smit, Ilona Rauhala, Kristiina Joki-
nen, Mikko Kurimo, and Sami Virpioja. Low-resource active learning of mor-
phological segmentation. Northern European Journal of Language Technol-
ogy, Vol. 4, Article 4, pages 47–72, Mar 2016.

© 2016 Linköping University Electronic Press.
Reprinted with permission.

239





Low-Resource Active Learning of Morphological
Segmentation

Stig-Arne Grönroos1

stig-arne.gronroos@aalto.fi
Katri Hiovain2

katri.hiovain@helsinki.fi

Peter Smit1

peter.smit@aalto.fi
Ilona Rauhala2

ilona.rauhala@helsinki.fi

Kristiina Jokinen2

kristiina.jokinen@helsinki.fi
Mikko Kurimo1

mikko.kurimo@aalto.fi

Sami Virpioja3

sami.virpioja@aalto.fi

1Department of Signal Processing and Acoustics, Aalto University, Finland
2Institute of Behavioural Sciences, University of Helsinki, Finland

3Department of Computer Science, Aalto University, Finland

October 10, 2016

Abstract

Many Uralic languages have a rich morphological structure, but lack morphological
analysis tools needed for efficient language processing. While creating a high-quality
morphological analyzer requires a significant amount of expert labor, data-driven
approaches may provide sufficient quality for many applications. We study how to
create a statistical model for morphological segmentation with a large unannotated
corpus and a small amount of annotated word forms selected using an active learning
approach. We apply the procedure to two Finno-Ugric languages: Finnish and
North Sámi. The semi-supervised Morfessor FlatCat method is used for statistical
learning. For Finnish, we set up a simulated scenario to test various active learning
query strategies. The best performance is provided by a coverage-based strategy
on word initial and final substrings. For North Sámi we collect a set of human-
annotated data. With 300 words annotated with our active learning setup, we see a
relative improvement in morph boundary F1-score of 19% compared to unsupervised
learning and 7.8% compared to random selection.
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1 Introduction
In morphologically rich languages, such as the Uralic languages, the number of observed
word forms grows rapidly with increasing corpus size. For instance, in Finnish, nouns
can have over 2000 different word forms due to case inflection and various clitics, while
verbs can have about 12 000 different forms due to person, number, tempus, and modus
inflection and especially to the abundance of infinitival and participle forms, the latter of
which are inflected like nouns (Karlsson, 1982). Naturally not all valid combinations of
suffixes are common in usage, but they are nevertheless not only theoretical possibilities
but part of the living language.

This vocabulary growth can be problematic for natural language processing (NLP)
applications, because it causes sparsity in the calculated statistics. Compared e.g. with
English which has a small number of inflectional forms, Finnish does not easily lend itself
to word form n-gram probability to be used as the basis of NLP tasks since not all possible
word forms, not to mention their combinations, occur even in large corpora. Thus it is
essential to model such languages on a sub-word level, using for example morphological
analysis that allows word forms to be analyzed into parts of two types: the lexical meaning
carrying part(s) and the various morphemes which carry grammatical information.

Despite the improvement of development tools and the increase of computational
resources since the introduction of finite-state transducer (FST) based morphological
analyzers in the 1980s (Koskenniemi, 1983), the bottleneck for the traditional method
of building such analyzers is still the large amounts of manual labor and skill that are
required (Koskenniemi, 2008). The strength of such analyzers is the potential to produce
output of high quality and detailed morphological tags.

Morphological surface segmentation is a relaxed variant of morphological analysis, in
which the surface form of a word is divided into segments that correspond to morphemes.
The segments, called morphs, are not mapped onto underlying abstract morphemes as in
FST-based analyzers, but concatenating the sequence of morphs results directly in the
observed word form. Allomorphic variation is left unresolved.

Although unsupervised learning of morphological segmenters does not reach the detail
and accuracy of hand-built analyzers, it has proven useful for many NLP applications,
including speech recognition (Creutz et al., 2007), information retrieval (Kurimo et al.,
2010), and machine translation (Virpioja et al., 2007; Fishel and Kirik, 2010; Grönroos
et al., 2015b). Unsupervised methods are especially valuable for low-resource languages,
as they do not require any expensive resources produced by human experts.

While hand built morphological analyzers and large annotated corpora may be un-
available due to the expense, a small amount of linguistic expertise is easier to obtain.
Given word forms embedded in sentence contexts, a well-informed native speaker of a
language can mark the prefixes, stems and suffixes of the words in question. A brief
collection effort of this type will result in a very small set of annotated words.

A small amount of annotated data of this type can be used to augment a large amount
of unannotated data by using semi-supervised methods, which are able to learn from
such mixed data. As little as one hundred manually segmented words have been shown
to provide significant improvements to the quality of the output when compared to a
linguistic gold standard (Kohonen et al., 2010). Adding more annotated data improves
the results, with rapid improvement at least up to one thousand words. Ruokolainen et al.
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(2016) provide an empirical comparison of semi-supervised methods for morphological
segmentation.

When gathering annotated training samples for a specific model, active learning may
provide better results than selecting the samples randomly. A common objective is to
reach adequate performance with a shorter annotator effort. In active learning, the anno-
tated words are chosen according to some strategy, making use of information from the
available data set, previously selected words, and models trained in previous iterations.

In this work, we use active learning for morphological segmentation of Finnish and
North Sámi. This work extends the preliminary results in our previous work (Grönroos
et al., 2015a). We extend the work by including experiments in a second language:
Finnish. We explore several query strategies for selecting the words to annotate. The
comparison to random selection is more rigorously performed.

2 Related work on North Sámi
There has been research effort into FST-based morphology for Sámi languages (Trosterud
and Uibo, 2005; Lindén et al., 2009; Tyers et al., 2009). In particular, the Giellatekno
research lab1 provides rule-based morphological analyzers both for individual word forms
and running text, in addition to miscellaneous other resources such as wordlists and
translation tools. The morphological analyzer gives the morphological properties of a
word in the form of tags. For example, given the word vaddjojuvvon (“cut”, PASSIVE),
the analyzer produces the following output:2

(1)
vaddjojuvvon vadjat+V+TV+Der/PassL+V+IV+Ind+Prs+Sg1
vaddjojuvvon vadjat+V+TV+Der/PassL+V+IV+Ind+Prt+ConNeg
vaddjojuvvon vadjat+V+TV+Der/PassL+V+IV+PrfPrc

Speech technology tools for North Sámi have been explored in the DigiSami project3

(Jokinen, 2014), which is one of the projects in the Academy of Finland research frame-
work aimed to increase and support digital viability of less-resourced Finno-Ugric lan-
guages with the help of speech and language technology. DigiSami focuses especially on
North Sámi, and sets to collect data, provide tools, and develop technology to enable
North Sámi speech-based applications to be developed (Jokinen and Wilcock, 2014a).
Moreover, the project aims to encourage community effort for online content creation,
and for this, Wikipedia-based applications are supported, such as WikiTalk (Jokinen and
Wilcock, 2014b; Wilcock et al., 2016). This is a robot-application which allows the user
to interact with a robot concerning information in the Wikipedia articles.

For speech recognition, a method for statistical segmentation may be preferred over
rule-based morphological analyzers. A rule-based analyzer is limited in the vocabulary it
recognizes, and non-standard spellings might not be analyzed at all. In addition, the tag
set produced by the analyzer may be too rich. For instance, a morphological segmentation
of the above example word, vaddj + ojuvvo + n, consists of only 3 morphs, while the
Giellatekno analyzer gives a lemma and 6 to 8 tags. Such abstract tags produced by a

1http://giellatekno.uit.no/
2For tag definitions, see http://giellatekno.uit.no/doc/lang/sme/docu-sme-grammartags.html
3http://www.helsinki.fi/digisami/
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morphological analyzer are not directly applicable in speech recognition, which requires
lexical units that can be concatenated into the surface form of the words (Hirsimäki
et al., 2006). The work described in this paper directly supports development of the tools
that can be used to develop speech technology for North Sámi or other less-resourced
languages.

3 On North Sámi and Finnish Morphology
North Sámi (davvisámegiella) belongs to the Finno-Ugric languages and is related to
Finnish and other Baltic-Finnic languages. It is one of the nine Sámi languages spoken
in the northern parts of Norway, Sweden, Finland and Russia. North Sámi is the biggest
of the Sámi languages, with around 30 000 speakers. As the Sámi language speakers do
not necessarily understand each other, North Sámi functions as a lingua franca among
the Sámi speakers. It is also widely used in newspapers and text books, and there are
Sámi language TV and radio broadcasts.

Linguistically, North Sámi is characterized as an inflected language, with cases, num-
bers, persons, tense and mood. The inflectional system has seven categories: the nouns
have four inflection categories (stems with a vowel or a consonant, the so-called contract-
ing is-nouns, and alternating u-nouns), and the verbs have three conjugation categories
(gradation, three syllabic, and two syllabic verbs). The only monosyllabic verbs are “leat”
(to be) and the negation verb.4 The verbs and pronouns have specific dual forms besides
singular and plural forms, i.e. “we the two of us” and “we more than two”.

North Sámi features a complicated although regular morphophonological variation.
For instance, the inflected forms follow weak and strong grades which concern almost all
consonants. North Sámi is also a fusional language and a single morph can stand for more
than one morphological category. In a similar way as in Estonian, loss of certain suffixes
has resulted in complicated morphophonological alternations or gradation patterns in the
stem. This is especially true of the genitive-accusative form, e.g. girji (“book”, SgNom)
vs. girjji (“book”, SgGen-Acc).

Adjectives typically have two forms: predicative (duojár lea čeahppi “the craftsman
is skillful”) and attributive (čeahpes duojár “a skillful craftsman”) (Sammallahti, 1998).
Furthermore, for many adjectives the attributive form can take two alternative forms.
For example seavdnjat (“dark”) has the two attributive variants sevdnjes and seavdnjadis.

North Sámi has productive compound formation, and compounds are written together
without an intermediary space. For example nállošalbmái (“into the eye of the needle”),
could be segmented as nállo + šalbmá + i. North Sámi makes extensive use of derivation,
both in verbs and in nouns. For example the adjective muoŧŧái (“with many aunts”) is
derived in a regular manner from muoŧŧa (“aunt”).

In order to show applicability of the proposed method to another language, we include
experiments using Finnish. The choice of Finnish as the second language is motivated
by its morphological similarity to North Sámi, making it reasonable to use the results
of the Finnish experiment in designing the North Sámi experiment. In addition, we
can take advantage of the wide availability of data and tools for Finnish. The Morpho

4Like Finno-Ugrian languages in general, also North Sámi forms negation by a particular negation
verb which is inflected in person.
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Challenge data (Kurimo et al., 2007, 2010) processed by a morphological analyzer enable
the experiment with a simulated annotator.

North Sámi and Finnish morphology share many similarities. Nouns are inflected by
case and can have possessive suffixes attached, while verbs inflect by person, number,
tempus and modus. Morphemes are typically ordered according to the same structure,
such as in

(2) kisso
stem
bussá

+i +lla
PL. ADE.
+in

+nne
POSS.
+eaet

+kin
clitic
+ge

also on your cats

There are also syntactic similarities, such as forming negations using a negation verb.
Both languages have gradation of stems. There is even a large number of words with a
shared origin, both through the shared origin of the languages and through loaning of
words from Finnish to Sámi.

There are also some dissimilarities between the languages, including the dual form
for pronouns and verbs in North Sámi, and the number of cases (6 in North Sámi, 15 in
Finnish). Adjectives in Finnish do not have a separate attributive form.

Moreover, the morphophonology of the languages differs. North Sámi has neither
vowel harmony nor final consonant gemination. North Sámi has 30 consonants, which
is more than the 17 in Finnish, but less vowels (7 in North Sámi, 8 in Finnish) (Aikio,
2005; VISK, 2004). In North Sámi, gradation applies to almost all consonants, and thus
there is more morphophonological alternation than in Finnish.

4 Annotation of North Sámi Segmentation
Most North Sámi words have an unambiguous segmentation agreeing both with intuition
and with established linguistic interpretation. These words contain only easily separated
suffixes: markers for case and person, and derivational endings. However, some words
require the annotator to make choices on where to place the boundary. In this section, we
will describe the challenges faced during annotation, and the decisions made in response.

As a general principle, we aimed to maximize the consistency of the annotations.
For established linguistic interpretation we referred to the work by Aikio (2005); Álgu-
tietokanta (2006); Nickel and Sammallahti (2011); Sammallahti (1998).

Inflectional morphology is typically more straightforward to analyze than derivational
morphology. The optimal granularity on which to analyze derivations depends on the
needs of the application. It appears that the Giellatekno analyzer does not return verbs
derived from nouns to the originating noun, even though it does do so for verbs derived
from other verbs. We have segmented both derivational and inflectional morphology,
without marking the distinction in the segmentation. We deviate from the granularity
preferred by Giellatekno by also segmenting derivational suffixes that convert nouns into
verbs, if the boundary is distinct.

An exception was made in the case of certain lexicalized stems. These stems appear
to end with a derivational suffix, but removal of the suffix does not yield a morpheme at
all, or results in a morpheme with very weak semantic relation to the lexicalized stem.
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An example is ráhkadi + t (“make, produce”), rather than ráhka + di + t, compared to
ráhka + t (“crack”).

A related challenge was posed by certain lexicalized adverbial forms. These words
appear to contain suffixes that could have been segmented, but these suffixes do not have
their conventional function in the word. For example, the segmentations davá + s (“to
the north”) and davvi + n (“in the north”) would appear to contain the singular locative
and essive case marker, respectively, but would not have their conventional meanings. A
decision was made to leave these forms unsegmented.

To remain consistent, it was rather important that the annotator(s) recognized the
declensions of the words. This is because North Sámi has several declensions both in
nouns and verbs, and the segmentations often vary depending on them when following
grammatical interpretation.

A further challenge was posed by the extensive stem alternation and fusion in Sámi.
To maximize consistency, the segmentation boundary was usually placed so that all of the
morphophonological alternation remains in the stem. Even though language education
classifies verbs into verb types according to the suffix (-it, -at, -ut, …), we have segmented
the infinitive marker as -t. The preceding vowel is seen as part of the stem, undergoing
alternation for phonological and grammatical reasons. A similar decision was needed
for the multifunctional derivational ending of verbs, -d- or -di-. Also, the corresponding
literature shows some varying interpretations about these suffixes (Sammallahti, 1998;
Nickel and Sammallahti, 2011). For example boradit could be segmented both as bora +
di + t and bora + d + it. In this work we have used the former segmentation.

Exceptions include the passive derivational suffix, which is found as variants -ojuvvo-,
-juvvo- and -uvvo-, depending on the inflectional category and stem type. The pleonastic
derivational ending for actor occurs in the forms -jeaddji- and -eaddji-.

Observe that many of the segmented suffixes, such as -i, and -t, occur homonymously
in different word classes. For example -t could act as a marker for nominative plural in
nouns or a marker for present time Sg2 person in verbs, and can also have other functions.

5 Semi-supervised Morphological Segmentation
While unsupervised morphological segmentation has recently been an active topic of
research (Hammarström and Borin, 2011), semi-supervised morphological segmentation
has not received as much attention. Semi-supervised morphological segmentation can be
approached in many ways. One approach is to seed the learning with a small amount of
linguistic knowledge in addition to the unannotated corpus (Yarowsky and Wicentowski,
2000). Some semi-supervised methods where a part of the training corpus is supplied
with correct outputs have also been presented, including generative (Kohonen et al.,
2010; Sirts and Goldwater, 2013; Grönroos et al., 2014) and discriminative (Poon et al.,
2009; Ruokolainen et al., 2014) methods.

5.1 Morfessor FlatCat
As a method for morphological segmentation of words, we use Morfessor FlatCat (Grön-
roos et al., 2014). It is the most recent addition to the Morfessor family of methods for
learning morphological segmentations primarily from unannotated data.
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The method is based on a generative probabilistic model which generates the observed
word forms by concatenating morphs. The model parameters θ define a morph lexicon.
The morph mi is considered to be stored in the morph lexicon, if it has a non-zero
probability P (mi |θ) given the parameters.

Morfessor utilizes a prior distribution P (θ) over morph lexicons, derived from the
Minimum Description Length principle (Rissanen, 1989). The prior favors lexicons that
contain fewer, shorter morphs. The purpose is to find a balance between, on one hand,
the size of the lexicon, and, on the other hand, the size of the corpus D when encoded
using the lexicon θ. This balance can be expressed as finding the following Maximum a
Posteriori (MAP) estimate:

θ̂ = arg max
θ

P (θ |D) = arg min
θ

(
− logP (θ)− logP (D |θ)

)
. (3)

In order to use the annotations produced in the active learning for training Morfessor,
we employ the semi-supervised training approach by Kohonen et al. (2010). This involves
replacing the MAP estimate (3) with the optimization

θ̂ = arg min
θ

(
− logP (θ)− α logP (D |θ)− β logP (A |θ

)
, (4)

where A is the annotated training corpus, and α and β are the weights for the likelihood of
the unannotated corpus and annotated corpus, respectively. Both the hyper-parameters
α and β affect the overall amount of segmentation predicted by the model. The β
hyper-parameter also affects the relative importance of using the morphs present in the
annotated corpus, compared to forming a segmentation from other morphs in the lexicon.

Morfessor FlatCat uses a flat lexicon, in contrast to the hierarchical lexicon in the
Categories-MAP (Creutz and Lagus, 2005) (Cat-MAP) variant of Morfessor. In a hierar-
chical lexicon, morphs can be built using other morphs already in the lexicon, while in a
flat lexicon each morph is represented directly as a string of letters. Each letter requires
a certain number of bits to encode, making longer morphs more expensive to add to the
lexicon.

A hierarchical lexicon has some benefits in the treatment of frequent strings that are
not morphs, but it also presents challenges in model training. When using a flat lexicon,
all morph references point from the corpus to the lexicon, making ML estimation of HMM
parameters straightforward, and allowing the factorization required for the weighting of
the cost function components seen in Equation 4. When using a hierarchical lexicon, also
the references within the lexicon must be taken into account, making this approach to
semi-supervised learning inapplicable.

Moreover, for a flat lexicon, the cost function divides into two parts that have opposing
optima: the cost of the data (the likelihood) is optimal when there is minimal splitting
and the lexicon consists of the words in the training data, whereas the cost of the model
(the prior) is optimal when the lexicon is minimal and consists only of the letters. In
consequence, the balance of precision and recall of the segmentation boundaries can be
directly controlled by weighting the data likelihood using the hyper-parameters. Tuning
these hyper-parameters is a very simple form of supervision, but it has drastic effects
on the segmentation results (Kohonen et al., 2010). A direct control of the balance may
also be useful for some applications: Grönroos et al. (2015b) used this method to tune
segmentation for machine translation.
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Figure 1: A graph representation of the Hidden Markov model morphotactics, applied
to the example word sisafárrejeaddjin. The word boundary symbol is marked #. One
transition and one emission probability are indicated.

Figure 1 illustrates the hidden Markov model (HMM) used for modeling word for-
mation. The HMM has morph categories as hidden states and morphs as observations.
Each morph token is categorized as prefix (pre), stem (stm), or suffix (suf). Inter-
nally to the algorithm, a non-morph (non) category is used, intended to model frequent
substrings that are not morphs but fragments of a morph. HMM morphotactics were
previously used in the Categories-ML (Creutz and Lagus, 2004) and Cat-MAP variants
of Morfessor, but Morfessor FlatCat is the first method to combine the approach with
semi-supervised training.

In order to calculate the emission probability of a morph conditioned on the morph
category, P (mi | ci), the prior of Morfessor FlatCat includes encoding of the right and
left perplexity of the morph. The perplexity measures describe the predictability of the
contexts in which the morph occurs. Morphs with unpredictable right or left contexts
are more likely to be prefixes or suffixes, respectively. Longer morphs are more likely
to be stems. The perplexities and length in characters are turned into probabilities, by
applying a sigmoidal soft thresholding followed by normalization.

The benefit of the HMM morphotactics is increased context-sensitivity, which im-
proves the precision of the segmentation. For example, in English, the model can prevent
splitting a single s, a common suffix, from the beginning of a word, e.g. in *s + wing. Mod-
eling of morphotactics also improves the segmentation of compound words, by allowing
the overall level of segmentation to be increased without increasing over-segmentation
of stems. The presence of morph categories in the output makes it simple to use the
method as a stemmer by removing affixes and retaining only stems. The main benefits
of semi-supervised learning are in the modeling of suffixation. As the class of suffixes is
closed and has high frequency, a good coverage can be achieved with a relatively small set
of annotations, compared to the open morph classes such as compound parts. (Grönroos
et al., 2014)

The model parameters θ are optimized utilizing a greedy local search. In each step,
a particular subset of the boundaries is reanalyzed and the model parameters updated.

Morfessor FlatCat is initialized using the segmentation from the 2.0 version (Virpioja
et al., 2013) of Morfessor Baseline (Creutz and Lagus, 2002, 2007). It employs a morph
lexicon P (m |θ) that is simply a categorical distribution over morphs m, in other words
a unigram model.
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6 Active Learning
Data annotation is often performed for the specific goal of improving the performance of
a particular system on a task. This gives the opportunity to carefully select the data that
will be annotated, in order to maximize the effect and minimize the cost of annotations.
This annotation process with systematic (active) data selection is called active learning.
Many algorithms and methods exist for active learning, but they are not all equally
suitable in every situation.

Active learning methods can be divided into three frameworks: pool-based active
learning, (membership) query synthesis and stream-based selective sampling (Settles,
2009).

In pool-based active learning (Lewis and Gale, 1994), the system has access to a pool
of unlabeled data A and can request from the annotator true labels for a certain number
of samples in the pool. Pool-based active learning can be performed either on-line by
selecting one sample in each iteration, or as a batch algorithm by selecting a list of
samples at once, before updating the information available to the learner. Pool-based
active learning has been successfully applied in NLP (McCallumzy and Nigamy, 1998).

Pool-based active learning can be contrasted with query synthesis, in which the learner
generates samples to annotate de novo, instead of selecting from a pool of candidates.
These methods are difficult to apply to morphological segmentation, due to the challenge
of generating valid surface forms.

The third category, stream-based selective sampling, is similar to pool-based active
learning in that there is a pool of potential samples. In this framework, the samples come
in one by one, and the learner has to decide in an on-line fashion whether to query an
annotation for that sample or not.

In this work we apply pool-based active learning. Therefore we define the active
learning procedure as follows:

In each iteration of active learning, a query strategy is applied for selecting the next
samples to elicit and add to the annotated data. The query strategy has access to four
sources of information that can be used for guiding the decision at time t:

1. the training pool A,

2. the set of unannotated data D,

3. the current set of annotated data A<1...t>,

4. and the current best model trained with all training samples collected up to that
point M<t>.

A<t+1> = Strategy(A,D,A<1...t>,M<t>) (5)

In this work we make a distinction between the training pool A, and the entire unanno-
tated data D, even though they are often chosen to be the same set.

More general reviews of active learning have been written by Settles (2009) and Guyon
et al. (2011).
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Figure 2: The two first iterations of the active learning procedure applied in this work.
Dashed lines indicate the initialization of models. The dotted lines indicate that the
procedure can be repeated for additional iterations.

6.1 Active Learning Applied to Morphological Segmentation
Active learning methods have been applied for constructing FST-based analyzers by elic-
iting new rules from a user with linguistic expertise (Oflazer et al., 2001; Bosch et al.,
2008). These development efforts are fast for rule-based systems, but still require months
of work.

In the case of morphological segmentation, we try to assess the value of adding the
gold standard segmentation of new words into the annotated data set. The methods
have access to a list of the n current best segmentations Z<t>

i,(1) . . . Z
<t>
i,(n) for each word wi,

together with their likelihoods given the current model.
Figure 2 shows our active learning procedure, which starts from nothing but an unan-

notated corpus collected for other purposes. An initial model is trained in an unsupervised
fashion. The procedure then applies three components iteratively:

1. active selection of new words to annotate using the query strategy,

2. elicitation of annotations for the selected words, and

3. training of the new segmentation model using all available training data.

7 Query Strategies
Active learning requires a specific method for ranking the samples according to their
informativeness. Finding the true informativeness of a sample would require looping over
all samples in the pool, eliciting an annotation for the sample and training a new model
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with only that sample added. As the cost of finding the true informativeness would
completely negate the benefits, we need a surrogate objective function that is feasible to
optimize. This surrogate objective together with the method for optimizing it is called
the query strategy. The ranking of the training pool according to this query strategy can
then be used for selecting data.

Query strategies fall into two broad categories: strategies that primarily use the previ-
ously trained model for the task at hand in order to estimate the objective function, and
strategies that define the surrogate objective function separately, by directly modeling
the properties of the training set.

In the following section we describe a set of query strategies that are applicable to
active learning using Morfessor.

7.1 Uncertainty Sampling
Lewis and Gale (1994) introduced uncertainty sampling, which is one of the most com-
monly used methods (Settles, 2009; Guyon et al., 2011). It was used for the NLP tasks
of document classification by Lewis and Catlett (1994), and parsing and information
extraction by Thompson et al. (1999).

Uncertainty sampling uses the model’s estimate of the uncertainty of the decision
associated with a particular sample in order to select the additional samples to annotate.
The certainty is given by the likelihood of the current best segmentation, compared to
all alternative segmentations.

The next word to annotate A<t+1> at time step t is selected from A based on the
uncertainty of the current best segmentation Z<t>

i,(1) for each word wi

A<t+1> = arg max
wi∈A

[
1− P (Z<t>

i,(1) |wi;θ
<t>)

]
= arg min

wi∈A

P (Z<t>
i,(1) , wi |θ<t>)

P (wi |θ<t>)
, (6)

where the likelihood of the word with the current best segmentation P (Z<t>
i,(1) , wi |θ<t>)

is given by the Viterbi algorithm (Viterbi, 1967) and the likelihood of the word with any
segmentation P (wi |θ<t>) is given by the forward algorithm (Baum, 1972).

7.2 Margin Sampling
While uncertainty sampling compares the probability of the current best segmentation
to all alternative segmentations, margin sampling (Scheffer et al., 2001) only compares
to the second best alternative segmentation. The distance to the runner up is called the
margin. If the margin is large, the model is certain about the segmentation. Therefore,
the word with the smallest margin is selected.

A<t+1> = arg min
wi∈A

[
P (Z<t>

i,(1) |wi;θ
<t>)− P (Z<t>

i,(2) |wi;θ
<t>)

]
= arg min

wi∈A

P (Z<t>
i,(1) , wi |θ<t>)− P (Z<t>

i,(2) , wi |θ<t>)

P (wi |θ<t>)
(7)
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7.3 Query-by-Committee by Bracketing the Corpus Weight
In the query-by-committee (QBC) algorithm (Seung et al., 1992; Freund et al., 1997),
a committee of predictors independently give their prediction for each sample. The
samples that cause most disagreement among the committee members are considered
most informative to annotate.

In this experiment the committee consists of two Morfessor FlatCat models, trained
with the corpus coding weight hyper-parameter α set to values 10% above and below the
optimal value. The reasoning is that the uncertainty about segmentations that are sensi-
tive to a small shift in α is steering the hyper-parameter optimization. Annotating some
of these words may allow the global benefits of a slightly different α without introducing
errors in words containing the particular morphs in these annotations.

The algorithm filters the words in the training pool, leaving only the words that were
segmented differently by the two models in the committee.

A′ = {wi ∈ A : M<t>
1 (wi) ̸= M<t>

2 (wi)} (8)

In order to select a particular word from the set of filtered words, we pick the one
with largest sum of likelihoods given by the two models

A<t+1> = arg max
wi∈A′

[
P (Z<t>

i,(1) |θ
<t>
1 ) + P (Z<t>

i,(1) |θ
<t>
2 )

]
. (9)

This selects a word that has high likelihood under both models, but that the models still
disagree on.

7.4 Coverage of Initial/Final Substrings
The Initial/final substrings query strategy is inspired by the feature selection method
called coverage by Druck et al. (2009), which aims to select features that are dissimilar
from existing labeled features, increasing the labeled features’ coverage of the feature
space.

The method aims to select samples representative of the whole data distribution,
instead of querying uncertain samples under the current model, which are likely to contain
outliers and exceptional cases.

We apply the idea of coverage to selection of samples to annotate, by defining binary
features for the words, and then selecting words so that the features present in them
maximize coverage. Our active learning selection differs from the feature selection in
that only one sample is needed to cover a feature, instead of labeling all samples with
that feature.

We define the features to be substrings starting from the left edge (initial) or ending
at the right edge (final) of the word. The length of substrings is limited to between 2 and
5 characters. Let Ω(wi) be the set of such substring features in word wi.

When ranking the words, points are awarded for each substring s present in the ranked
word, unless that substring already occurs in the previously selected words. This can be
written as the maximization

A<t+1> = arg max
wi∈A

∑
s∈Ω(wi)

I
(
s /∈ Ω(A<j>) ∀j ∈ {1 . . . t}

) #(s)

N|s|
(10)
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where I is the indicator function, and #(s) the occurrence count of feature s. Dividing
by

Nk =

∑
s I(|s| = k)# (s)∑

s I(|s| = k)
(11)

normalizes the occurrence counts by the average occurrence count for substrings of the
same length.

This query strategy differs from the other compared methods in that it does not use the
Morfessor model when selecting words. However, it can be considered an active selection
strategy, as it does define a surrogate objective to systematically take into account the
available data A and the previous selections A<1...t>. A benefit of this strategy is that
the user does not have to interleave elicitation and Morfessor training. A large list of
words can be selected in advance.

7.5 Words without Stem
No stem is a query strategy specific to Morfessor FlatCat. It uses the morph category
tags in the current best analysis, to filter a smaller set of potential words from the pool.

Only words for which the current analysis does not contain any morph categorized as
stm are kept. This finds stems that are not yet included in the lexicon, and therefore
have been over-segmented into non:s. This improves the coverage of the morph lexicon.

The uncertainty measure is used for selecting individual words from the filtered set.

7.6 Consequent Non-morphemes/Suffixes
Consequent non/suf is another strategy specific to Morfessor FlatCat. It is similar to
the No stem strategy, filtering words to only the words with two or more consecutive
morphs categorized as non or suf. This strategy is designed to improve suffix chains, in
addition to finding over-segmented stems.

7.7 Representative Sampling
Xu et al. (2003) introduce representative sampling (RS), that selects samples which are
dissimilar to each other, in order to give a good coverage of the dataset.

Selecting dissimilar samples is of particular importance when selection and training
is done in batches instead of on-line. An on-line algorithm updates the uncertainty after
each sample, making it less likely to select redundant words than a batch algorithm.

We apply representative sampling by clustering the 500 top ranked words for the
Uncertainty and QBC strategies. We cluster the words using k-medoids, with k set
to 50. Levenshtein distance (Levenshtein, 1966) is used as the string edit distance. The
clustering is repeated 10 times, and the clustering with the smallest intra-cluster variation
is selected. The final selection consists of the 50 cluster medoid words.
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8 Evaluation
The word segmentations generated by the model are evaluated by comparison with an-
notated morph boundaries using boundary precision, boundary recall, and boundary F1-
score (see, e.g., Virpioja et al., 2011). The boundary F1-score equals the harmonic mean
of precision (the percentage of correctly assigned boundaries with respect to all assigned
boundaries) and recall (the percentage of correctly assigned boundaries with respect to
the reference boundaries).

Precision =
#(correct)

#(proposed) ; Recall = #(correct)
#(reference) (12)

Precision and recall are calculated using macro-averages over the words in the evaluation
set. In the case that a word has more than one annotated segmentation, we take the one
that gives the highest score.

We also report the scores for subsets of words consisting of different morph category
patterns found in the evaluation set. These categories are words that should not be seg-
mented (stm), compound words consisting of exactly two stems (stm+stm), a stem fol-
lowed by a single suffix (stm+suf) and a stem and exactly two suffixes (stm+suf+suf).
Only precision is reported for the stm pattern, as recall is not defined for an empty set
of true boundaries.

In addition to the annotated data, we can consider the analysis produced by the North
Sámi morphological analyzer from Giellatekno as a secondary gold standard. However,
comparing a morphological segmentation to a morphological tagging is not trivial. First,
tagging provides abundant information not present in the surface forms. Second, even
for tags that have an approximately corresponding morph in the word form, the mapping
between the tags and morphs is unknown and must be inferred.

Virpioja et al. (2011) describe several methods for the latter problem. We did pre-
liminary tests with the CoMMA-B1 score that is based on the co-occurrence of the mor-
phemes between the word forms. From the Giellatekno analyses, we split the word forms
according to the marked compound boundaries and selected a subset of tags related to
inflections and derivations. Then we ran CoMMA-B1 using the annotated test set words
as predictions and the modified Giellatekno analyses as a gold standard. This provided
precision 0.818, recall 0.155, and F1-score 0.261. While the scores are also affected by the
annotation decisions explained in Section 4, especially the low recall demonstrates that
evaluating morphological segmentation based on morphological tagging is problematic.

9 Experiment I: Comparison of Query Strategies
For this experiment, we simulate an annotator using 500 000 segmented word types
sampled from the Morpho Challenge 2007 (Kurimo et al., 2007) Finnish data set. This set
was analyzed using the two-level morphology analyzer FINTWOL by Lingsoft, Inc., after
which the analysis was mapped from the morpheme tags to surface forms of morphemes.
This mapping is nontrivial due to the abundance of morphological tags with no surface
representation, fusional morphemes, and allomorphy. The applied mapping is described
by Creutz and Lindén (2004).
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Figure 3: Comparison of different query strategies. The y-axis shows the performance
evaluated using F1-score for the Finnish test set, for models trained using varying amounts
of annotated data selected using the query strategy. The thick orange crossed line shows
the average of 5 random selections, while the shaded area shows the maximum and
minimum.

For hyper-parameter optimization, we used the 835 words in the Morpho Challenge
2010 (Kurimo et al., 2010) development set, and for evaluation the 224 939 words in the
corresponding test set.

We simulated an active learning setup using the large annotated data set, by applying
the query strategies, and then constructing annotated training sets of the selected words
with their annotations. The query strategies did not have access to the annotations of
the complete data set.

Regarding the hyper-parameters of Morfessor FlatCat, the corpus likelihood weight α
was set by grid search for each selection and iteration individually. In order to consider-
ably decrease the amount of computation, the value for the annotation likelihood weight
β was set using a heuristic formula optimized for Finnish:5

log β = 1.9 + 0.8 log |D| − 0.6 log |A|, (13)

where |D| and |A| are the numbers of word types in the unannotated and annotated
training data sets, respectively. Although it is not guaranteed to be optimal, using
the same heuristic value for all query strategies is not expected to favor any particular
strategy. The perplexity threshold was set to 75.

5The formula is based on work currently being prepared for publication by the present authors.
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Table 1: Sizes of the unannotated corpora used in Experiment II, and the initial division
into subsets.

Corpus Word tokens Word types
Den samiske tekstbanken 17 985 140 691 190
UIT-SME-TTS 42 150 8194

Development set – 200
Evaluation pool – 800
Training pool A – 7194

9.1 Results
Figure 3 shows the F1-score for different query strategies with increasing amounts of
annotations. The random selection baseline is averaged over 5 runs.

The only query strategy that consistently performs better than random selection is
Initial/final substrings. It appears to plateau after 200 annotated words. Inspection of
the selected words reveals an assortment of words with common suffixes and compound
modifiers.

The No stem strategy initially shows strong performance, but falls below random
selection when 250 or more words are annotated.

For the Uncertainty strategy, applying the Representative sampling improves perfor-
mance, but it should be noted that when only 50 words have been selected, it performs
worse than random selection. These first selected words appear to contain many outliers.

Margin sampling does not perform well when used with Morfessor FlatCat. Some
selected words have a small margin due to small differences in the category tagging of
morphs, which does not even affect the segmentation. Other words are outlier non-
words, with several low-probability segmentation alternatives. Margin sampling would
also benefit from applying the representative sampling, as it tends to select many words
that are similar to each other.

For the Query-by-Committee (QBC) strategy, only the best results which included
representative sampling (RS) are plotted. The method performed worse than random
selection, and was discontinued after 3 iterations. The selections of this strategy con-
sisted entirely of compound words, with much redundancy in compound parts despite
the representative sampling.

Based on these results, Initial/final substrings was selected as the main query strategy
for the North Sámi experiment. Uncertainty+RS was also included, due to its popularity
in the literature, and receiving the second highest score at 300 annotated words.

10 Experiment II: Active Learning for North Sámi
We used two different text corpora in our experiments. The sizes of the corpora are
shown in Table 1. The larger Den samiske tekstbanken corpus6 was only used as source

6Provided by UiT, The Arctic University of Norway.
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for a word list, to use as the unannotated training data. It contains texts of six genres:
administrative, bible, facta, fiction, laws and news.

The smaller UIT-SME-TTS corpus was divided into separate pools from which eval-
uation and training words were drawn for annotation. The sentences in which the words
occur were also extracted for use as contexts. To ensure that the evaluation words are
unseen, the words in the evaluation pool were removed from the other subsets.

The use of two corpora enables the release of the annotations with their sentence con-
texts. Selecting sentences from Tekstbanken would have precluded release, as the restric-
tive license of the Tekstbanken corpus does not allow republication. It also demonstrates
the effectiveness of the system under the realistic scenario where a large general-domain
word list for the language is available for use, even though the corpora themselves are
unavailable due to restrictive licensing. A similar scenario would be selection from a
specific target domain corpus.

In contrast to our preliminary work (Grönroos et al., 2015a) we used Morfessor Flat-
Cat during the entire experiment. We used Morfessor Baseline only as initialization
method for the initial Morfessor FlatCat model. FlatCat models in later iterations were
initialized from the unsupervised FlatCat model, as shown in Figure 2.

As prefixes are very rare in North Sámi, and none were seen in the annotations, we
disabled the prefix category by setting an extremely high perplexity threshold for prefixes.

In contrast to the Finnish used in Experiment I, we did not have a heuristic formula
for β similar to Equation 13 that would be suitable for North Sámi. However, as we had
a smaller number of compared methods, we could set all three hyper-parameters (corpus
likelihood weight α, annotation likelihood weight β, perplexity threshold for suffixes) by
a grid search for each selection and iteration individually.

10.1 Elicitation of Annotations
In this section, we describe the tool used for elicitation during this experiment, and
the resulting data set. For discussion on the challenges of annotating North Sámi for
morphological segmentation and our responses to them, see Section 4.

There are no efficient on-line training algorithms for Morfessor FlatCat. Thus we used
a batch procedure, by selecting a list of 50 new words to annotate with the query strategy
being evaluated, and re-trained Morfessor once the whole list had been annotated.

As the Initial/final substrings query strategy does not depend on the Morfessor model
during active selection, it was possible to evaluate in a single iteration selecting and
annotating the full list of 300 words. Subsets were also evaluated, to show the effect of
varying the size of annotations.

For the elicitation step, we developed a web-based annotation interface. A javascript
app using the jQuery framework was used as a front-end and a RESTful Python wsgi-
app built on the bottle framework7 as a back-end. For words in the training pool, the
interface shows the segmentation of the current model as a suggestion to the annotator.
Words in the development and evaluation pools are shown unsegmented, in order not to
bias the annotator.

The tool gives the option of providing a distinct segmentation for word tokens with
the same surface form, depending on the sentence context. Even word forms belonging to

7http://bottlepy.org/
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Figure 4: Evaluation using F1-score for the North Sámi test set, for models trained using
varying amounts of annotated data selected using the two selected query strategies. The
thick orange crossed line shows the average of 5 random selections, while the shaded area
shows the maximum and minimum.

different parts of speech could be homonymous through inflection, and therefore require
phrasal context to disambiguate. For example vearrái would be unsegmented if it occurs
as an adjective (“mean, evil”), but would be segmented vearrá + i if it occurs as the illative
of the noun vearri (“mistake, wrongdoing”).

In some rare cases there was no phrasal context provided with the word to be seg-
mented, making it impossible to disambiguate between possible alternative segmenta-
tions. This could be caused by isolated words in the corpus, or by mistakes in the
automatic tokenization. In these cases, the annotator had to make a judgment call on
how to disambiguate the word token.

The annotations were produced by a single Sámi scholar, who is not a native speaker
of Sámi. In total 2311 annotated words were collected, divided into 1493 randomly
selected word types and 818 actively selected word types. The total time spent by the
annotator was 32 hours.8 A second non-native Sámi speaking linguist independently
reannotated 815 of the same words. The principles for segmentation of ambiguous words
were discussed prior to the reannotation, but the work itself was independent. Comparing
the placement of morph boundaries in the annotations using Cohen’s kappa (Cohen, 1960)
results in an inter-annotator agreement of 0.82 (“almost perfect agreement”).

8Includes time spent during the preliminary experiments. Breaks longer than 30 minutes are omitted.
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Table 2: The model parameters, number of annotated words, and North Sámi test set
BPR, for models trained in each iteration of Experiment II. For random selection the
averages over all repetitions are shown. Note that the size of the annotated data set may
be less than the number of selected words, if non-words were selected.

Hyper-parameters Full test set
Model |A| α β ppl-thresh Pre Rec F1

Unsupervised 0 0.4 – 20 0.726 0.633 0.677
Random selection 50 0.48 18000 40 0.725 0.725 0.725
Initial/final substrings 50 0.4 15000 40 0.733 0.802 0.766
Uncertainty + RS 50 0.3 21000 25 0.687 0.769 0.726
Random selection 100 1.02 18000 40 0.746 0.721 0.734
Initial/final substrings 100 1.5 23000 40 0.765 0.769 0.767
Uncertainty + RS 99 0.8 16000 30 0.732 0.760 0.745
Random selection 150 1.30 15000 40 0.754 0.726 0.740
Initial/final substrings 150 1.7 19000 40 0.774 0.766 0.770
Uncertainty + RS 149 1.4 15000 60 0.757 0.757 0.757
Random selection 200 1.32 16000 40 0.750 0.743 0.746
Initial/final substrings 200 1.9 18000 40 0.767 0.780 0.773
Uncertainty + RS 198 1.7 14000 70 0.776 0.778 0.777
Random selection 250 1.56 14000 40 0.760 0.743 0.751
Initial/final substrings 250 1.7 16000 50 0.766 0.800 0.783
Uncertainty + RS 247 1.5 15000 80 0.768 0.811 0.789
Random selection 300 1.68 10000 40 0.763 0.732 0.747
Initial/final substrings 300 1.4 14000 40 0.767 0.819 0.792
Uncertainty + RS 297 1.5 14000 80 0.772 0.842 0.805

10.2 Results
Figure 4 shows the improvement of the F1-score as more annotations became available.
The random selection baseline was averaged over 5 repetitions.

As in Experiment I, the Initial/final substrings strategy performs consistently better
than random selection. In contrast to that experiment, its performance does not stagnate,
but accelerates in the last two iterations.

The results for the Uncertainty + Representative sampling strategy differ in several
ways from Experiment I. While performance at 50 words is again weak, it is at no iteration
worse than random selection. Performance increases rapidly, with Uncertainty + RS
surpassing Initial/final substrings when 200 words have been selected.

Table 2 shows the models trained in this experiment. For the full test set, we improve
the F1-score by 18.9% compared to unsupervised learning, with most of the improvement
coming from an increase in recall. There is also a small increase in precision. Compared
to random selection, the increase in F1-score is 7.8%.

The values for the hyper-parameters are also shown in Table 2. The optimal value for
the corpus likelihood weight α is different for unsupervised and semi-supervised training,
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Table 3: Boundary precision (Pre), recall (Rec), and F1-scores for different subsets of the
evaluation data.

STM STM+STM STM+SUF STM+SUF+SUF
Words in subset 228 55 335 65
Model |A| Pre Pre Rec F1 Pre Rec F1 Pre Rec F1

Unsupervised 0 .697 .897 .836 .866 .664 .427 .520 .715 .369 .487
Random selection 50 .648 .869 .848 .859 .696 .587 .637 .712 .433 .538
Initial/final substr. 50 .645 .827 .909 .866 .717 .716 .717 .733 .500 .595
Uncertainty + RS 50 .579 .820 .891 .854 .665 .654 .659 .751 .477 .583
Random selection 300 .705 .899 .807 .851 .739 .608 .667 .711 .477 .571
Initial/final substr. 300 .675 .842 .855 .848 .774 .743 .759 .715 .569 .634
Uncertainty + RS 297 .667 .867 .873 .870 .777 .779 .778 .769 .638 .698

with the change happening between 50 and 100 words. The same phenomenon could be
seen in Experiment I. Different local optima of α seem to be dominant, depending on the
influence of the annotations. Despite the decrease in overall segmentation caused by this
increase in α, the semi-supervised models segment ca 15% more than the unsupervised
model.

Statistical significance testing was performed using the Wilcoxon signed-rank test
(p < 0.01). The difference between Initial/final substrings and random selection was
shown to be statistically significant for all sizes of annotated data. The difference between
Uncertainty + RS and random selection was only significant with 200 annotated words
or more. The difference between the two active selection strategies was only significant
at 50 annotated words.

Table 3 shows scores for different categories of words, defined using patterns of morph
categories. The selected patterns include all patterns with two morphs or less. For these
patterns, precision and recall have a straightforward interpretation. The stm+suf+suf
pattern was included to shed light on the handling of the boundary between two suffixes.
The selected patterns cover 86% of the words in the test set.

When comparing to unsupervised learning, all three forms of semi-supervised learning
give better results for suffixation (stm+suf and stm+suf+suf), already with just 50
annotated words. The score for words without internal structure (stm pattern) is only
improved when selecting 300 words randomly. For both suffix patterns, active selection is
superior to random selection, especially in recall. However, recall for the stm+suf+suf
remains low for all compared systems. The boundary between two suffixes is the most
difficult for Morfessor to place correctly (Ruokolainen et al., 2016).

Random selection gives the best precision for compound words (stm+stm), but has
low recall also for this pattern.

After excluding the stm pattern, the best performing method is unambiguous for a
particular number of annotations. If only 50 annotated words are used, the best perfor-
mance for all remaining patterns is given by the Initial/final substrings strategy. With
300 annotated words, the best performing strategy is Uncertainty + RS.

Initial/final substrings assumes that one sample is enough to cover a feature. In other
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words, it assumes that every word beginning or ending with a particular substring will
equally well teach the model how to segment other words with the same substring. In
practice this assumption does not hold, e.g. seammaláhkái (“by the same means”) is
segmented seamma + láhkái, while govvadahkkái (“to the picture maker”) is segmented
govva + dahkká + i. Both words end in kái, but it is segmented differently. The query
strategy is to some extent able to compensate by using longer substrings, and in practice
does not seem to make too many detrimental selections.

11 Conclusions
We have applied an active learning approach to modeling morphological segmentation
of two Uralic languages: Finnish and North Sámi. The work was accomplished using
open-source software.9 We present the collected language resources for the use of the
scientific community.10

We performed two experiments. In the first experiment, we compared seven different
query strategies using Finnish gold standard segmentations to simulate an annotator. In
the second experiment, we applied the active learning system to collect a set of human-
annotated data for North Sámi.

In both of the experiments, the Initial/final substrings query strategy performed better
than random selection regardless of the size of the annotated data set. In the Finnish
language experiment, it is clearly the best method.

The performance of the segmentation model was shown to increase rapidly as the
amount of human-annotated data was increased. With 300 annotated North Sámi words,
collected using the Uncertainty + Representative sampling query strategy, F1-score was
improved by 19% (relative) compared to unsupervised learning and 7.8% (relative) com-
pared to random selection. The increase was consistent over several sets of words with
different morphological patterns. The largest benefit of the annotations was in the mod-
eling of suffixation.

The results of the two experiments differ with regard to the performance of the Un-
certainty + RS query strategy. In the last iterations of the North Sámi experiment, it
outperforms Initial/final substrings, even though the difference is not statistically signif-
icant. The different outcomes may be caused by real differences between the morphology
of the languages, or the properties of the data sets. However, the difference could also
be an artifact caused by either the procedure of simulating an annotator or the heuristic
hyper-parameter values used in Experiment I.

If the proposed method is applied to a new language, the minimum amount of training
set words to annotate should be around 100, in addition to the development set needed
for the hyper-parameter optimization. The transition of the value of the hyper-parameter
α from the local optimum of unsupervised training to the optimum of semi-supervised
training has not yet occurred at 50 annotated words. Additionally, with only 50 an-
notated words, Uncertainty + RS does not yet outperform random selection. If a very
small number of words (100–200) are collected, we recommend using the Initial/final
substrings query strategy. As the number of annotations grows larger, active selection is

9Morfessor is available at http://www.cis.hut.fi/projects/morpho/.
The annotation and active learning tool is available at https://github.com/Waino/morphsegannot/.

10The data is available at http://research.spa.aalto.fi/speech/data_release/north_saami_active_learning/.
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still preferable over random selection, but the choice of specific query strategy may be
less important.

The Initial/final substrings query strategy does not apply the current segmentation
model when making selections, even though incorporating information also from this
source might be useful. Hybrid strategies that combine or switch between multiple query
strategies were not explored in this work. Another avenue for future work is the ex-
ploration of different string similarity metrics for the representative sampling, as the
Levenshtein edit distance used in this work may not yield optimal clusters.
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Abstract

Semi-supervised sequence labeling is an effective way to train a low-resource
morphological segmentation system. We show that a feature set augmentation
approach, which combines the strengths of generative and discriminative mod-
els, is suitable both for graphical models like conditional random field (CRF) and
sequence-to-sequence neural models. We perform a comparative evaluation be-
tween three existing and one novel semi-supervised segmentation methods. All
four systems are language-independent and have open-source implementations.
We improve on previous best results for North Sámi morphological segmentation.
We see a relative improvement in morph boundary F1-score of 8.6% compared
to using the generative Morfessor FlatCat model directly and 2.4% compared to a
seq2seq baseline. Our neural sequence tagging system reaches almost the same
performance as the CRF topline.

Tiivistelmä

Puoliohjattu sekvenssiluokitus on tehokas tapa opettaa morfologinen pilkon-
tajärjestelmä kielelle, jolle on saatavilla niukasti lingvistisiä resursseja. Osoitam-
me, että generatiivisen mallin tuottamien piirteiden käyttäminen soveltuu paitsi
graafisille malleille kuten ehdollinen satunnaiskenttä (CRF), myös sekvenssistä-
sekvenssiin (seq2seq) -neuroverkkomalleille. Vertailemme kolmea olemassaole-
vaa ja yhtä uutta puoliohjattua menetelmää. Kaikki menetelmät ovat kieliriippu-
mattomia, ja niille on avoimen lähdekoodin toteutus. Parannamme aikaisempia
tuloksia pohjoissaamen morfologisen pilkonnan tehtävässä. Suhteelliset paran-
nukset morfirajojen osumien F1-mittaan ovat 8.6% verrattuna generatiiviseen
Morfessor FlatCat -malliin ja 2.4% verrattuna seq2seq-verrokkimalliin. Ehdotta-
mammeuusi neuroverkkomalli saavuttaa lähes saman tason kuin paras CRF-malli.

This work is licensed under a Creative Commons Attribution–NoDerivatives 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by-nd/4.0/



16

1 Introduction
Subword models have enjoyed recent success in many natural language processing
(NLP) tasks, such as machine translation (Sennrich et al., 2015) and automatic speech
recognition (Smit et al., 2017). Uralic languages have rich morphological structure,
making morphological segmentation particularly useful for these languages. While
rule-based morphological segmentation systems can achieve high quality, the large
amount of human effort needed makes the approach problematic for low-resource
languages. As a fast, cheap and effective alternative, data-driven segmentation can
be learned based on a very small amount of human annotator effort. Using active
learning, as little as some hundreds of annotated word types can be enough (Grönroos
et al., 2016).

Adopting neural methods has lead to a large performance gain formanyNLP tasks.
However, neural networks are typically data-hungry, reducing their applicability to
low-resource languages. Most research has focused on high-resource languages and
large data sets, while the search for new approaches to make neural methods applica-
ble to small data has only recently gained attention. For example, the workshop Deep
Learning Approaches for Low-Resource NLP (DeepLo¹) was arranged first time in the
year of writing. Neural methods have met with success in high-resource morpholog-
ical segmentation (e.g. Wang et al., 2016). We are interested to see if data-hungry
neural network models are applicable to segmentation in low-resource settings, in
this case for the Uralic language North Sámi.

Neural sequence-to-sequence (seq2seq) models are a very versatile tool for NLP,
and are used in state of the art methods for a wide variety of tasks, such as text sum-
marization (Nallapati et al., 2016) and speech synthesis (Wang et al., 2017). Seq2seq
methods are easy to apply, as you can often take e.g. existing neural machine trans-
lation software and train it with appropriately preprocessed data. Kann et al. (2018)
apply the seq2seq model for low-resource morphological segmentation.

However, arbitrary length sequence-to-sequence transduction is not the optimal
formulation for the task of morphological surface segmentation. We return to formu-
lating it as a a sequence tagging problem instead, and show that this can be imple-
mented with minor modifications to an open source translation system.

Moreover, we show that the semi-supervised training approach of Ruokolainen
et al. (2014) using feature set augmentation can also be applied to neural networks to
effectively leverage large unannotated data.

2 Morphological processing tasks
There are several related morphological tasks that can be described as mapping from
one sequence to another. Morphological segmentation is the task of splitting words
into morphemes, meaning-bearing sub-word units. In morphological surface segmen-
tation, the word w is segmented into a sequence of surface morphs, substrings whose
concatenation is the word w.

e.g. achievability 7→ achiev ◦ abil ◦ ity

Canonical morphological segmentation (Kann et al., 2016) instead yields a sequence
of standardized segments. The aim is to undo morphological processes that result in

¹https://sites.google.com/view/deeplo18/home
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allomorphs, i.e. different surface morphs corresponding to the same meaning.

w 7→ y; w ∈ Σ∗, y ∈ (Σ ∪ {◦})∗

e.g. achievability 7→ achieve ◦ able ◦ ity

where Σ is the alphabet of the language, and ◦ is the boundary marker.
Morphological analysis yields the lemma and tags representing the morphological

properties of a word.
w 7→ yt; w, y ∈ Σ∗, t ∈ τ∗

e.g. took 7→ take PAST

where τ is the set of morphological tags.
Two related morphological tasks are reinflection and lemmatization. In morpho-

logical reinflection (see e.g. Cotterell et al., 2016), one or more inflected forms are given
to identify the lexeme, together with the tags identifying the desired inflection. The
task is to produce the correctly inflected surface form of the lexeme.

wt 7→ y; w, y ∈ Σ∗, t ∈ τ∗

e.g. taken PAST 7→ took

In lemmatization, the input is an inflected form and the output is the lemma.

w 7→ y; w, y ∈ Σ∗

e.g. better 7→ good

Morphological surface segmentation can be formulated in the same way as canon-
ical segmentation, by just allowing the mapping to canonical segments to be the iden-
tity. However, this formulation fails to capture the fact that the segments must con-
catenate back to the surface form. The model is allowed to predict any symbol from
its output vocabulary, although only two symbols are valid at any given timestep:
the boundary symbol or the actual next character. If the labeled set for supervised
training is small, the model may struggle with learning to copy the correct characters.
Kann et al. (2018) address this problem by a multi-task training approach where the
auxiliary task consists of reconstructing strings in a sequence auto-encoder setting.
The strings to be reconstructed can be actual words or even random noise.

Surface segmentation can alternatively be formulated as structured classification

w 7→ y; w ∈ Σk, y ∈ Ωk, k ∈ N

e.g. uses 7→ BMES

whereΩ is the segmentation tag set. Note that there is no need to generate characters
from the original alphabet, instead a small tag setΩ is used. The fact that the sequence
of boundary decisions is of the same length k as the input has also been made explicit.

Different tag sets Ω can be used for segmentation. The minimal sets only include
two labels: BM/ME (used e.g. by Green and DeNero, 2012). Either the beginning (B)
or end (E) of segments is distinguished from non-boundary time-steps in the middle
(M). A more fine-grained approach BMES² (used e.g. by Ruokolainen et al., 2014) uses

²Also known as BIES, where I stands for internal.
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Figure 1: Model architectures. To prevent the figure from becoming too large, the
seq2seq model is drawn with only one LSTM layer in both encoder and decoder. The
attention is only shown for the fist time step.

four labels. In addition to marking both beginning and end of segments, a special
label is used for single-character (S) segments.

Morphological analysis or canonical segmentation resolve ambiguity, and aremore
informative than surface segmentation. Learning to resolve such ambiguity is a more
challenging task to learn than surface segmentation. Surface segmentation may be
preferred over the other tasks e.g. when used in an application that needs to generate
text in a morphologically complex language, such as when it is the target language
in machine translation. If surface segments are generated, the final surface form is
easily recovered through concatenation.

To summarize, arbitrary-length sequence transduction is a formulationwell suited
for many morphological tasks. Morphological surface segmentation is an exception,
being more appropriately formulated as sequence tagging.

3 Models for semi-supervised segmentation
Our semi-supervised training follows the approach of Ruokolainen et al. (2014). The
training data consists of a large unlabeled set, and a smaller labeled training set. The
labeled training set is further divided into two parts. A generative model, in our
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Factor Emb
character 350 b i e b m o r á h k a d e a m i s
boundary 10 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
category 10 M M M M M M M M M M M M f f f f f

Table 1: Example input factors with embedding dimension. The example word
biebmoráhkadeamis is segmented as biebmo/STM ráhkad/STM eami/SUF s/SUF. Stem
(STM) is abbreviated M, and suffix (SUF) is f.

case Morfessor FlatCat, is trained in a semi-supervised fashion using the first part of
the labeled training set. The words in the second part of the labeled training set are
segmented using the generative model. Now these words are associated with two seg-
mentations: predicted and gold standard. A discriminative model is then trained on
the second part of the labeled training set. The predictions of the generative model
are fed into the discriminative model as augmented features. The gold standard seg-
mentation is used as the target sequence.

At decoding time a two-step procedure is used: first the features for the desired
words are produced using the generative model. The final segmentation can then be
decoded from the discriminative model.

The idea is that the features from the generative model allow the statistical pat-
terns found in the large unannotated data to be exploited. At the same time, the capac-
ity of the discriminative model is freed for learning to determine when the generative
model’s predictions are reliable, in essence to only correct its mistakes.

3.1 Morfessor FlatCat

We produce the features for our semi-supervised training using Morfessor FlatCat
(Grönroos et al., 2014). Morfessor FlatCat is a generative probabilistic method for
learning morphological segmentations. It uses a prior over morph lexicons inspired
by the Minimum Description Length principle (Rissanen, 1989). Morfessor FlatCat
applies a simple Hidden Markov model for morphotactics, providing morph category
tags (stem, prefix, suffix) in addition to the segmentation. The segmentations are more
consistent compared to Morfessor Baseline, particularly when splitting compound
words.

Morfessor FlatCat producesmorph category labels in addition to the segmentation
decisions. These labels can also be used as features. An example of the resulting
3-factor input is shown in Table 1.

3.2 Sequence-to-sequence

Our sequence-to-sequence (seq2seq) baseline model follows Kann et al. (2018) with
some minor modifications. It is based on the encoder-decoder with attention (Bah-
danau et al., 2014). The encoder is a 2-layer bidirectional Long Short-Term Mem-
ory (LSTM) layer (Hochreiter and Schmidhuber, 1997), while the decoder is a 2-layer
LSTM. The model is trained on the character level.

Figure 1a shows the basic structure of the architecture. For simplicity a single
layer is shown for both encoder and decoder.
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3.3 Conditional random fields

Conditional random fields (CRF) are discriminative structured classification models
for sequential tagging and segmentation (Lafferty et al., 2001). They are expressed as
undirected probabilistic graphical models. Figure 1c shows the model structure. CRFs
can be seen as generalizing the log-linear classifier to structured outputs. They bear
a structural resemblance to hidden Markov models, while relaxing the assumption of
the observations being conditionally independent given the labels.

We use the implementation of linear-chain CRFs by Ruokolainen et al. (2014)³.

3.4 Neural sequence tagger

The encoder is a standard single-layer bidirectional LSTM. The decoder is a single-
layer LSTM, which takes as input at time t the concatenation of the encoder output at
time t and an embedding of the predicted label at t− 1. There is no attention mecha-
nism. However, the time-dependent connection to the encoder could be described as
a hard-coded diagonal monotonic attention that always moves one step forward. The
architecture can be seen in Figure 1b.

The most simple fixed-length decoding strategy is to forego structured prediction
and instead make a prediction at each time-step based only on the encoder output st.
The prediction at each time-step is then conditionally independent given the hidden
states. We choose to instead feed the previous decision back in, causing a left-to-right
dependence on previous decisions.

The proposedmodel has only 5% of the number of parameters of the seq2seqmodel
(469 805 versus 8 820 037). The proposedmodel requires no attentionmechanism, and
the target vocabulary is much smaller. We also found that the optimal network size
in terms of number of layers and vector dimensions was smaller.

We use factored input for the additional features. The FlatCat segmentation deci-
sion andmorph category label are independently embedded. These factor embeddings
are concatenated to the character embedding.

Because our human annotations include the category labels, we use a simple
target-side multi-task setup to predict them in addition the the segmentation bound-
aries. The output vocabulary is extended to cover all combinations of segmentation
decision and category label. Because our data set contains twomorph categories, STM
and SUF, this only increases the size of the output vocabulary from 5 (BMES + end
symbol) to 10.

We use a modified beam search to ensure that the output sequence is of the correct
length. This is achieved by manipulating the probability of the end symbol, setting it
to zero if the sequence is still too short and to one when the correct length is reached.

The system is implemented by extending OpenNMT (Klein et al., 2017). Our im-
plementation is open source⁴.

4 North Sámi
North Sámi (davvisámegiella) is a Finno-Ugric language, spoken in the northern parts
of Norway, Sweden, Finland and Russia. With around 20 000 speakers, it is biggest of
the nine Sámi languages.

³Available from http://users.ics.tkk.fi/tpruokol/software/crfs_morph.zip
⁴Available from https://github.com/Waino/OpenNMT-py/tree/same_length_decoder
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Purpose Subset Component Word types Labels
Training Unlabeled FlatCat 691190 No
Training Feature train FlatCat 200 Yes

Main train System 844 Yes
Development Both 199 Yes
Testing 796 Yes

Table 2: Subdivision of data sets, with size in word types. The component column
indicates which components use the data during training.

North Sámi is a morphologically complex language, featuring both rich inflection,
derivation and productive compounding. It has complicated although regular mor-
phophonological variation. Compounds are written together without an intermediary
space. For example nállošalbmái (“into the eye of the needle”), could be segmented as
nállo ◦ šalbmá ◦ i.

The morphology of Sámi languages has been modeled using finite state methods
(Trosterud and Uibo, 2005; Lindén et al., 2009). The Giellatekno research lab⁵ provides
rule-based morphological analyzers both for individual word forms and running text,
in addition to miscellaneous other resources such as wordlists and translation tools. A
morphological analyzer is not a direct replacement for morphological segmentation,
as there is no trivial way to map from analysis to segmentation. In addition to this,
rule-based analyzers are always limited in their coverage of the vocabulary.

For an overview into the Giellatekno/Divvun and Apertium projects, including
their work on Sámi languages, see Moshagen et al. (2014).

5 Data
We use version 2 of the data set collected by (Grönroos et al., 2015; Grönroos et al.,
2016) as the labeled data, and as unlabeled data a word list extracted fromDen samiske
tekstbanken corpus⁶.

The labeled data contains words annotated for morphological segmentation with
morph category labels. The annotations were produced by a single Sámi scholar, who
is not a native speaker of Sámi. In total 2311 annotated words were available. The de-
velopment and test sets contain randomly selected words. The training set set of 1044
annotations is the union of 500 randomly selected words and and 597 using different
active learning approaches. There was some overlap in the sets. Due to the active
learning, it should be assumed that the data set is more informative than a randomly
selected data set of the same size.

Table 2 shows how the data was subdivided. The unlabeled data, the development
set and the test set are the same as in Grönroos et al. (2016). To produce the two la-
beled training sets, we first combined the labeled training data collected with different
methods. From this set, 200 word types were randomly selected for semi-supervised
training of Morfessor FlatCat, and the remaining 844 were used for training the dis-

⁵http://giellatekno.uit.no/
⁶Provided by UiT, The Arctic University of Norway.
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criminative system. These two labeled data sets must be disjoint to avoid the system
overestimating the reliability of the FlatCat output.

6 Training details
Tuning of FlatCat was performed following Grönroos et al. (2016). The corpus likeli-
hood weight α was set to 1.4. The value for the annotation likelihood weight β was
set using a heuristic formula optimized for Finnish:

logβ = 1.9 + 0.8 log |D| − 0.6 log |A|, (1)

where |D| and |A| are the numbers of word types in the unannotated and annotated
training data sets, respectively. Using this formula resulted in setting β to 13000.
Perplexity threshold for suffixes was set to 40. For prefixes we used a high threshold
(999999) to prevent the model from using them, as there are no prefixes in North Sámi.

The neural networks were trained using SGD with learning rate 1.0. Gradient
norm was clipped to 5.0. Batch size was set to 64 words. Embeddings were dropped
out with probability 0.3. Models were trained for at most 5000 steps, and evaluated
for early stopping every 250 steps.

For the neural sequence tagger, the embedding size was 350 for characters and 10
for other input factors, and 10 for target embeddings. The encoder single bi-LSTM
layer size was set to 150.

All neural network results are the average of 5 independent runs with different
seeds.

7 Evaluation
The segmentations generated by the model are evaluated by comparison with anno-
tated morph boundaries using boundary precision, boundary recall, and boundary F1-
score (see e.g., Virpioja et al., 2011). The boundary F1-score equals the harmonic mean
of precision (the percentage of correctly assigned boundaries with respect to all as-
signed boundaries) and recall (the percentage of correctly assigned boundaries with
respect to the reference boundaries).

Precision =
#(correct)
#(proposed) ; Recall = #(correct)

#(reference) (2)

Precision and recall are calculated using macro-averages over the words in the
test set. In the case that a word has more than one annotated segmentation, we take
the one that gives the highest score.

In order to evaluate boundary precision and recall, a valid segmentation is needed
for all words in the test set. The seq2seq model can fail to output a valid segmentation,
in which case we replace the output with the input without any segmentation bound-
aries. To include an evaluation without this source of error we also report word type
level accuracy. A word in the test set is counted as correct if all boundary decisions
are correct. Output that does not concatenate back to the input word is treated as
incorrect.
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system Pre Rec F1 w-acc
FlatCat (200 words) 78.20 77.60 77.90 57.20
Seq2seq (s) 86.94 78.62 82.54 64.60
NST (s) 83.26 83.92 83.58 69.12
CRF (s) 87.70 83.30 85.40 69.30
FlatCat (full) 74.30 84.10 78.90 61.80
Seq2seq (ss) 87.66 80.16 83.72 68.36
NST (ss) 84.28 85.58 84.94 71.02
CRF (ss) 86.30 85.20 85.70 71.10

Table 3: Results on the test set. Boundary precision (Pre), recall (Rec), and F1-scores,
together with word-type level accuracy (w-acc). NST is short for neural sequence
tagger. FlatCat (200 words) shows the performance of the FlatCat system used to
produce the input features. FlatCat (full) line shows FlatCat trained using the full
training set. Fully supervised models, i.e. without using FlatCat features, are marked
(s). Semi-supervised models are marked (ss).

STM STM + STM STM + SUF STM + SUF + SUF
Pre Pre Rec F1 Pre Rec F1 Pre Rec F1

FlatCat (200) 71.50 78.50 70.90 74.50 77.60 69.90 73.50 78.90 56.70 66.00
Seq2seq (s) 82.02 89.82 66.54 76.08 88.22 74.78 80.94 81.44 56.10 66.32
NST (s) 76.74 83.84 78.20 80.90 86.04 79.82 82.82 80.30 58.34 67.58
CRF (s) 79.80 95.50 60.00 73.70 89.40 82.70 85.90 83.30 62.70 71.60
FlatCat (full) 62.70 82.50 92.70 87.30 76.70 76.40 76.60 72.90 61.90 67.00
Seq2seq (ss) 82.46 91.08 68.00 77.80 88.46 76.46 82.00 84.74 57.60 68.56
NST (ss) 78.78 87.90 86.56 87.20 85.28 80.12 82.60 78.20 59.54 67.58
CRF (ss) 77.20 96.40 85.50 90.60 86.60 79.40 82.80 88.60 67.90 76.90

Table 4: Boundary precision (Pre), recall (Rec), and F1-scores for different subsets
of the evaluation data. NST stands for Neural sequence tagger. (s) stands for fully
supervised, (ss) for semi-supervised.

8 Results
Table 3 shows results on the full test set. The semi-supervised CRF shows the best per-
formance both according to F1-score and word-type level accuracy. Semi-supervised
seq2seq has high precision but low recall, indicating under-segmentation. The neural
sequence tagger shows the opposite behavior, with the highest recall.

All semi-supervised methods improve on the quality of the semi-supervised Flat-
Cat trained on 200 annotated words which is used as input features. All three dis-
criminative methods also outperform FlatCat trained on the whole training set, on F1

and accuracy. All three semi-supervised methods outperform their fully supervised
variants. These results show that two-step training is preferable over using only Mor-
fessor FlatCat or one of the discrinative methods.
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The seq2seq model frequently fails to output a valid segmentation, either gener-
ating incorrect characters, stopping too early, or getting stuck repeating a pattern of
characters. For 10.7% of the test set, the seq2seq output does not concatenate back to
the input word.

Table 4 shows results for subsets of the evaluation data. The subsets include all
words were the gold standard category labels follow a particular pattern: No inter-
nal structure (STM), uninflected compound (STM+STM), single-suffix inflected word
(STM+SUF) and two-suffix inflected word (STM+SUF+SUF).

The seq2seq model has the best performance for the STM-pattern. This is only
partly explained by the bias towards not segmenting at all caused by the replacement
procedure for the invalid outputs.

The seq2seq model has high precision for all category patterns. Fully supervised
CRF has superior precision and recall for the STM+SUF pattern, while semi-supervised
CRF is superior for the STM+SUF+SUF pattern. CRF is good at modeling the bound-
aries of suffixes. Adding the FlatCat features improves the modeling of the boundary
between multiple suffixes, while slightly deteriorating the modeling of the boundary
between stem and suffix. The left-to-right decoding is a possible explanation for the
weaker performance of the neural sequence tagger on the STM+SUF+SUF pattern.
Fully supervised CRF is poor at splitting compound words, evidenced by the low re-
call for the STM+STM pattern. This deficiency is effectively alleviated by the addition
of the FlatCat features.

The neural sequence tagger is good at modeling the ends of stems, indicated by
high recall on the STM+STM and STM+SUF patterns.

9 Conclusions and future work
Semi-supervised sequence labeling is an effective way to train a low-resourcemorpho-
logical segmentation system. We recommend training a CRF sequence tagger using
a Morfessor FlatCat-based feature set augmentation approach. This setup achieves a
morph boundary F1-score of 85.70, improving on previous best results for North Sámi
morphological segmentation. Our neural sequence tagging system reaches almost the
same word-type level accuracy as the CRF system, while having better morph bound-
ary recall.

The bidirectional LSTM-CRF model (Huang et al., 2015) uses the power of a re-
current neural network to combine contextual features, and stacks a CRF on top for
sequence level inference. The performance of this architecture on the North Sámi
morphological segmentation task should be explored in future work.
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Abstract
Data-driven segmentation of words into subword units has been used in various natural language processing applications
such as automatic speech recognition and statistical machine translation for almost 20 years. Recently it has became
more widely adopted, as models based on deep neural networks often benefit from subword units even for morphologically
simpler languages. In this paper, we discuss and compare training algorithms for a unigram subword model, based on the
Expectation Maximization algorithm and lexicon pruning. Using English, Finnish, North Sami, and Turkish data sets,
we show that this approach is able to find better solutions to the optimization problem defined by the Morfessor Baseline
model than its original recursive training algorithm. The improved optimization also leads to higher morphological
segmentation accuracy when compared to a linguistic gold standard. We publish implementations of the new algorithms
in the widely-used Morfessor software package.

Keywords: Morphology, Statistical and Machine Learning Methods, Language Modelling, Unsupervised learning,
Tools, Less-Resourced/Endangered Languages

1. Introduction
Subword segmentation has become a standard prepro-
cessing step in many neural approaches to natural
language processing (NLP) tasks, e.g Neural Machine
Translation (NMT) (Sennrich et al., 2015) and Auto-
matic Speech Recognition (ASR) (Smit et al., 2017).
Word level modeling suffers from sparse statistics, is-
sues with Out-of-Vocabulary (OOV) words, and heavy
computational cost due to a large vocabulary. Word
level modeling is particularly unsuitable for morpho-
logically rich languages, but subwords are commonly
used for other languages as well. Subword segmen-
tation is best suited for languages with agglutinative
morphology.
While rule-based morphological segmentation systems
can achieve high quality, the large amount of human
effort needed makes the approach problematic, partic-
ularly for low-resource languages. The systems are lan-
guage dependent, necessitating use of multiple tools in
multilingual setups. As a fast, cheap and effective al-
ternative, data-driven segmentation can be learned in
a completely unsupervised manner from raw corpora.
Unsupervised morphological segmentation saw much
research interest until the early 2010’s; for a sur-
vey on the methods, see Hammarström and Borin
(2011). Semi-supervised segmentation with already
small amounts of annotated training data was found
to improve the accuracy significantly when compared
to a linguistic segmentation; see Ruokolainen et al.
(2016) for a survey. While this line of research has
been continued in supervised and more grammatically
oriented tasks (Cotterell et al., 2017), the more recent
work on unsupervised segmentation is less focused on
approximating a linguistically motivated segmentation.
Instead, the aim has been to tune subword segmenta-

tions for particular applications. For example, the sim-
ple substitution dictionary based Byte Pair Encoding
segmentation algorithm (Gage, 1994), first proposed
for NMT by Sennrich et al. (2015), has become a
standard in the field. Especially in the case of multi-
lingual models, training a single language-independent
subword segmentation method is preferable to linguis-
tic segmentation (Arivazhagan et al., 2019).
In this study, we compare three existing and one novel
subword segmentation method, all sharing the use of
a unigram language model in a generative modeling
framework. The previously published methods are
Morfessor Baseline (Creutz and Lagus, 2002), Greedy
Unigram Likelihood (Varjokallio et al., 2013), and Sen-
tencePiece (Kudo, 2018). The new Morfessor variant
proposed in this work is called Morfessor EM+Prune.
The contributions of this article are
(i) a better training algorithm for Morfessor Base-

line, with reduction of search error during train-
ing, and improved segmentation quality for En-
glish, Finnish and Turkish;

(ii) comparing four similar segmentation methods, in-
cluding a close look at the SentencePiece reference
implementation, highlighting details omitted from
the original article (Kudo, 2018);

(iii) and showing that the proposed Morfessor
EM+Prune with particular hyper-parameters
yields SentencePiece.

1.1. Morphological Segmentation with
Unigram Language Models

Morphological surface segmentation is the task of split-
ting words into morphs, the surface forms of meaning-
bearing sub-word units, morphemes. The concatena-
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Morfessor BL Greedy Unigram SentencePiece Morfessor EM+Prune
Model Unigram LM Unigram LM Unigram LM Unigram LM
Cost function MAP ML MAP MAP

Prior MDL – DP MDL+DP
Training algorithm Local search EM+Prune EM+Prune EM+Prune

Initialization Words Seed lexicon Seed lexicon Seed lexicon
EM variant – Lateen-EM once EM EM / Lateen-EM

Stopping criterion
Cost change threshold ✓ ✓ – ✓
Target lexicon size Approximate ✓ ✓ ✓

N-best decoding ✓ – ✓ ✓
Sampling decoding – – ✓ ✓
Count dampening ✓ – – ✓
Semi-supervised ✓ – – ✓
Requires pretokenization ✓ ✓ – ✓
Reference implementation Python C++ C++ Python

Table 1: Comparison of subword segmentation methods applying a unigram language model.

tion of the morphs is the word, e.g.

reliability 7→ reli++ abil ++ ity

Probabilistic generative methods for morphological
segmentation model the probability P (s) of generat-
ing a sequence of morphs (a word, sentence or corpus)
s = [m0, . . . ,mN ], as opposed to discriminative meth-
ods that model the conditional probability of the seg-
mentation boundaries given the unsegmented data.
This study focuses on segmentation methods applying
a unigram language model. In the unigram lan-
guage model, an assumption is made that the morphs
in a word occur independently of each other. Alterna-
tively stated, it is a zero-order (memoryless) Markov
model, generalized so that one observation can cover
multiple characters. The probability of a sequence of
morphs decomposes into the product of the probabili-
ties of the morphs of which it consists.

Pθ(s) =

N∏
i=1

Pθ(mi) (1)

The Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977) is an iterative algorithm
for finding Maximum Likelihood (ML) or Maximum a
Posteriori (MAP) estimates for parameters in models
with latent variables. The EM algorithm consists of
two steps. In the E-step (2), the expected value of the
complete data likelihood including the latent variable
is taken, and in the M-step (3), the parameters are
updated to maximize the expected value of the E-step:

Q(θ,θ(i−1)) =

∫
y

logP (D,y |θ)P (y |D,θ(i−1))dy

(2)
θi = arg max

θ
Q(θ,θ(i−1)). (3)

When applied to a (hidden) Markov model, EM is
called the forward-backward algorithm. Using instead

the related Viterbi algorithm (Viterbi, 1967) is some-
times referred to as hard-EM.1 Spitkovsky et al. (2011)
present lateen-EM, a hybrid variant in which EM and
Viterbi optimization are alternated.
Virpioja (2012, Section 6.4.1.3) discusses the chal-
lenges of applying EM to learning of generative mor-
phology. Jointly optimizing both the morph lexicon
and the parameters for the morphs is intractable. If,
like in Morfessor Baseline, the cost function is dis-
continuous when morphs are added or removed from
the lexicon, there is no closed form solution to the
M-step. With ML estimates for morph probabilities,
EM can neither add nor remove morphs from the lex-
icon, because it can neither change a zero probability
to nonzero nor vice versa.
One solution to this challenge is to apply local search.
Starting from the current best estimate for the param-
eters, small search steps are tried to explore near-lying
parameter configurations. The choice that yields the
lowest cost is selected as the new parameters. Greedy
local search often gets stuck in local minima. Even if
there are parameters yielding a better cost, the search
may not find them, causing search error. The error re-
maining at the parameters with globally optimal cost
is the model error.
Another solution is to combine EM with pruning
(EM+Prune). The methods based on pruning begin
with a seed lexicon, which is then iteratively pruned
until a stopping condition is reached. Subwords can-
not be added to the lexicon after initialization. As
a consequence, proper initialization is important, and
the methods should not prune too aggressively without
reestimating parameters, as pruning decisions cannot
be backtracked. For this reason, EM+Prune methods

1An analogy can be drawn to clustering using k-means,
which yields a hard assignment of data points to clus-
ters, and using EM for clustering with a Gaussian Mixture
Model (GMM), where the assignment is soft.
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proceed iteratively, only pruning subwords up to a pre-
defined iteration pruning quota, e.g. removing at most
20% of the remaining lexicon at a time.

2. Related Work
In this section we review three previously published
segmentation methods that apply a unigram language
model. Table 1 summarizes the differences between
these methods.

2.1. Morfessor Baseline
Morfessor is a family of generative models for un-
supervised morphology induction (Creutz and Lagus,
2007). Here, consider the Morfessor 2.0 implemen-
tation (Virpioja et al., 2013) of Morfessor Baseline
method (Creutz and Lagus, 2002).
A point estimate for the model parameters θ̂ is found
using MAP estimation with a Minimum Description
Length (MDL) (Rissanen, 1989) inspired prior that fa-
vors lexicons containing fewer, shorter morphs. The
MAP estimate yields a two-part cost function, consist-
ing of a prior (the lexicon cost) and likelihood (the cor-
pus cost). The model can be tuned using the hyper-
parameter α, which is a weight applied to the likeli-
hood (Kohonen et al., 2010):

θ̂ = arg min
θ

{− log
prior︷ ︸︸ ︷
P (θ) −α log

likelihood︷ ︸︸ ︷
P (D |θ)} (4)

The α parameter controls the overall amount of seg-
mentation, with higher values increasing the weight of
each emitted morph in the corpus (leading to less seg-
mentation), and lower values giving a relatively larger
weight to a small lexicon (more segmentation).
The prior can be further divided into two parts: the
prior for the morph form properties and the usage prop-
erties. The form properties encode the string repre-
sentation of the morphs, while the usage properties
encode their frequencies. Morfessor Baseline applies a
non-informative prior for the distribution of the morph
frequencies. It is derived using combinatorics from the
number of ways that the total token count ν can be
divided among the µ lexicon items:

P (τ1, . . . , τµ |µ, ν) = 1/

(
ν − 1

µ− 1

)
. (5)

Morfessor Baseline is initialized with a seed lexicon
of whole words. The Morfessor Baseline training al-
gorithm is a greedy local search. During training, in
addition to storing the model parameters, the current
best segmentation for the corpus is stored in a graph
structure. The segmentation is iteratively refined, by
looping over all the words in the corpus in a random or-
der and resegmenting them. The resegmentation is ap-
plied by recursive binary splitting, leading to changes
in other words that share intermediary units with the
word currently being resegmented. The search con-
verges to a local optimum, and is known to be sensitive
to the initialization (Virpioja et al., 2013).

In the Morfessor 2.0 implementation, the likelihood
weight hyper-parameter α is set either with a grid
search using the best evaluation score on a held-out
development set, or by applying an approximate auto-
matic tuning procedure based on a heuristic guess of
which direction the α parameter should be adjusted.

2.2. Greedy Unigram Likelihood
Varjokallio et al. (2013) presents a subword segmen-
tation method, particularly designed for use in ASR.
It applies greedy pruning based on unigram likelihood.
The seed lexicon is constructed by enumerating all sub-
strings from a list of common words, up to a speci-
fied maximum length. Pruning proceeds in two phases,
which the authors call initialization and pruning.
In the first phase, a character-level language model is
trained. The initial probabilities of the subwords are
computed using the language model. The probabilities
are refined by EM, followed by hard-EM. During the
hard-EM, frequency based pruning of subwords begins.
In the second phase, hard-EM is used for parameter
estimation. At the end of each iteration, the least fre-
quent subwords are selected as candidates for pruning.
For each candidate subword, the change in likelihood
when removing the subword is estimated by resegment-
ing all words in which the subword occurs. After each
pruned subword, the parameters of the model are up-
dated. Pruning ends when the goal lexicon size is
reached or the change in likelihood no longer exceeds
a given threshold.

2.3. SentencePiece
SentencePiece (Kudo and Richardson, 2018; Kudo,
2018) is a subword segmentation method aimed for use
in any NLP system, particularly NMT. One of its de-
sign goals is use in multilingual systems.
Although (Kudo, 2018) implies a use of maximum like-
lihood estimation, the reference implementation2 uses
the implicit Dirichlet Process prior called Bayesian
EM (Liang and Klein, 2007). In the M-step, the count
normalization is modified to

P (z) =
exp(Ψ(Cz))

exp(Ψ(
∑

z′ Cz′))
(6)

where Ψ is the digamma function.
The seed lexicon is simply the e.g. one million most
frequent substrings. SentencePiece uses an EM+Prune
training algorithm. Each iteration consists of two sub-
iterations of EM, after which the lexicon is pruned.
Pruning is based on Viterbi counts (EM+Viterbi-
prune). First, subwords that do not occur in the
Viterbi segmentation are pre-pruned. The cost func-
tion is the estimated change in likelihood when the
subword is removed, estimated using the assumption
that all probability mass of the removed subword goes
to its Viterbi segmentation. Subwords are sorted ac-
cording to the cost, and a fixed proportion of remaining
subwords are pruned each iteration. Single character

2https://github.com/google/sentencepiece
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Figure 1: Unweighted Morfessor cost function components (prior and likelihood). Log scale.

subwords are never pruned. A predetermined lexicon
size is used as the stopping condition.

3. Morfessor EM+Prune
Morfessor EM+Prune3 uses the unigram language
model and priors similar to Morfessor Baseline, but
combines them with EM+Prune training.

3.1. Prior
The prior must be slightly modified for use with the
EM+Prune algorithm. The prior for the frequency dis-
tribution (5) is derived using combinatorics. When
using real-valued expected counts, there are infinite
assignments of counts to parameters. Despite not be-
ing theoretically motivated, it can still be desirable to
compute an approximation of the Baseline frequency
distribution prior, in order to use EM+Prune as an im-
proved search to find more optimal parameters for the
original cost. To do this, the real valued token count ν
is rounded to the nearest integer4. Alternatively, the
prior for the frequency distribution can be omitted, or
a new prior with suitable properties could be formu-
lated. We do not propose a completely new prior in
this work, instead opting to remain as close as possible
to Morfessor Baseline.

3Software available at https://github.com/Waino/
morfessor-emprune .

4An alternative would be to replace the factorial with
the gamma function. This added precision serves no prac-
tical purpose, particularly as we already use Stirling’s ap-
proximation of the factorial.

In Morfessor EM+Prune, morphs are explicitly stored
in the lexicon, and morphs are removed from the lexi-
con only during pruning. This differs from Morfessor
Baseline, in which a morph is implicitly considered to
be stored in the lexicon if it has non-zero count.
The prior for the morph form properties does not need
to be modified. During the EM parameter estimation,
the prior for the morph form properties is omitted as
the morph lexicon remains constant. During pruning,
the standard form prior is applicable.
Additionally we apply the Bayesian EM implicit Dirich-
let Process prior (Liang and Klein, 2007). We experi-
ment with four variations of the prior:

1. the full EM+Prune prior,
2. omitting the Bayesian EM (noexpΨ),
3. omitting the approximate frequency distribution

prior (nofreqdistr),
4. and omitting the prior entirely (noprior).

3.2. Seed Lexicon
The seed lexicon consists of the one million most
frequent substrings, with two restrictions on which
substrings to include: pre-pruning of redundant sub-
words, and forcesplit. Truncating to the chosen size
is performed after pre-pruning, which means that pre-
pruning can make space for substrings that would oth-
erwise have been below the threshold.
Pre-pruning of redundant subwords is based on oc-
currence counts. If a string x occurs n times, then any
substring of x will occur at least n times. Therefore, if
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FS Prior ↓ Likelihood ↓ W-sum ↓
Words 1.79×107 1.32×107 2.98×107

Characters 2.35×102 2.90×107 2.61×107

EM+P MDL ✓ 4.69×105 2.09×107 1.92×107

Morfessor Baseline ✓ 7.55×105 2.05×107 1.92×107

Morfessor Baseline 8.84×105 1.99×107 1.88×107

EM+P MDL 5.80×105 2.02×107 1.88×107

EM+P MDL lateen 6.35×105 2.01×107 1.88×107

Table 2: Morfessor cost results for English. α = 0.9.
FS is short for forcesplit, W-sum for weighted sum of
prior and likelihood. ↓means that lower values are bet-
ter. The bolded method is our primary configuration.

FS Prior ↓ Likelihood ↓ W-sum ↓
Words 8.64×107 4.77×107 8.74×107

Characters 2.46×102 1.27×108 2.54×106

Morfessor Baseline ✓ 8.31×104 8.60×107 1.80×106

Morfessor Baseline 8.36×104 8.59×107 1.80×106

EM+P MDL ✓ 1.29×105 8.28×107 1.79×106

EM+P MDL lateen 1.41×105 8.22×107 1.79×106

EM+P MDL 1.31×105 8.26×107 1.78×106

Table 3: Morfessor cost results for Finnish. α = 0.02.

the substring has a count of exactly n, we know that it
is not needed in any other context except as a part of x.
Such unproductive substrings are likely to be poor can-
didate subwords, and can be removed to make space in
the seed lexicon for more useful substrings. This pre-
pruning is not a neutral optimization, but does affect
segmentation results. We check all initial and final sub-
strings for redundancy, but do not pre-prune internal
substrings.
To achieve forced splitting before or after certain
characters, e.g. hyphens, apostrophes and colons, sub-
strings which include a forced split point can be re-
moved from the seed lexicon. As EM+Prune is unable
to introduce new subwords, this pre-pruning is suffi-
cient to guarantee the forced splits. While Morfessor
2.0 only implements force splitting certain characters
to single-character morphs, i.e. force splitting on both
sides, we implement more fine-grained force splitting
separately before and after the specified character.

3.3. Training Algorithm
We experiment with three variants of the EM+Prune
iteration structure:

1. EM,
2. Lateen-EM,
3. EM+Viterbi-prune

EM+Viterbi-prune is an intermediary mode between
EM and lateen-EM in the context of pruning. The
pruning decisions are made based on counts from a
single iteration of Viterbi training, but these Viterbi
counts are not otherwise used to update the param-
eters. In effect, this allows for the more aggressive
pruning using the Viterbi counts, while retaining the
uncertainty of the soft parameters.
Each iteration begins with 3 sub-iterations of EM. In

Prior ↓ Likelihood ↓ W-sum ↓
Words 1.31×107 9.09×106 1.68×107

Characters 1.19×102 2.08×107 8.30×106

Morfessor Baseline 2.54×105 1.39×107 5.82×106

EM+P MDL lateen 2.79×105 1.37×107 5.78×106

EM+P MDL 2.71×105 1.37×107 5.77×106

EM+P MDL keep-redundant 2.97×105 1.36×107 5.73×106

Table 4: Morfessor cost results for Turkish. α = 0.4

FS Prior ↓ Likelihood ↓ W-sum ↓
Words 2.12×107 1.03×107 3.15×107

Characters 1.38×103 2.98×107 2.98×107

Morfessor Baseline ✓ 1.76×106 1.62×107 1.80×107

Morfessor Baseline 1.87×106 1.61×107 1.80×107

EM+P MDL ✓ 9.52×105 1.70×107 1.79×107

EM+P MDL lateen 9.83×105 1.69×107 1.79×107

EM+P MDL 9.56×105 1.69×107 1.79×107

Table 5: Morfessor cost results for North Sámi. α = 1.0

the pruning phase of each iteration, the subwords in
the current lexicon are sorted in ascending order ac-
cording to the estimated change in the cost function
if the subword is removed from the lexicon. Subwords
consisting of a single character are always kept, to re-
tain the ability to represent an open vocabulary with-
out OOV issues. The list is then pruned according to
one of three available pruning criteria:5

1. (α-weighted) MDL pruning,
2. MDL with automatic tuning of α for lexicon size,
3. lexicon size with omitted prior or pretuned α.

In (α-weighted) Minimum Description Length (MDL)
pruning, subwords are pruned until the estimated cost
starts rising, or until the pruning quota for the itera-
tion is reached, whichever comes first.
A subword lexicon of a predetermined size can be used
as pruning criterion in two different ways. If the de-
sired α is known in advance, or if the prior is omitted,
subwords are pruned until the desired lexicon size is
reached, or until the pruning quota for the iteration is
reached, whichever comes first.
To reach a subword lexicon of a predetermined size
while using the Morfessor prior, the new automatic
tuning procedure can be applied. For each subword,
the estimated change in prior and likelihood are com-
puted separately. These allow computing the value of
α that would cause the removal of each subword to
be cost neutral, i.e. the value that would cause MDL
pruning to terminate at that subword. For subwords
with the same sign for both the change in prior and
likelihood, no such threshold α can be computed: if
the removal decreases both costs the subword will al-
ways be removed, and if it increases both costs it will
always be kept. Sorting the list of subwords according
to the estimated threshold α including the always kept
subwords allows automatically tuning α so that a sub-

5MDL with or without automatic tuning is not compat-
ible with omitting the prior.
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α FS Pre ↑ Rec ↑ F ↑
EM+P MDL noexpΨ 0.8 ✓ 82.9 71.8 77.0
EM+P MDL nofreqdistr 0.8 ✓ 83.3 71.4 76.9
EM+P MDL 0.9 ✓ 81.9 72.1 76.7 –
Morfessor Baseline 0.8 ✓ 85.0 68.5 75.9 –
Morfessor Baseline 0.7 83.8 69.4 75.9 ∼B
EM+P MDL 0.6 79.0 72.8 75.8
SentencePiece 50k – 75.9 61.9 68.2

Table 6: Boundary Precision (Pre), Recall (Rec)
and F1-score (F) results for English. ∼E indicates
not significantly different (two-sided Wilcoxon signed-
rank test, p < 0.05, zero splitting) from the bolded
EM+Prune method, and ∼B from the bolded Base-
line.

α FS Pre ↑ Rec ↑ F ↑
EM+P MDL 0.035 ✓ 72.0 55.8 62.9 –
EM+P MDL nofreqdistr 0.02 ✓ 68.7 58.0 62.9 ∼E
EM+P MDL noexpΨ 0.02 ✓ 68.4 57.9 62.7 ∼E
EM+P MDL 0.015 66.7 58.5 62.3 ∼E
Morfessor Baseline 0.02 ✓ 62.3 58.2 60.2 –
SentencePiece 50k – 75.7 49.3 59.7 ∼B
Morfessor Baseline 0.02 62.0 57.6 59.7

Table 7: Boundary Precision (Pre), Recall (Rec) and
F1-score (F) results for Finnish.

word lexicon of exactly the desired size is retained after
MDL pruning. The automatic tuning is repeated be-
fore the pruning phase of each iteration, as retraining
the parameters affects the estimates.

3.4. Sampling of Segmentations
Morfessor EM+Prune can be used in subword regu-
larization (Kudo, 2018), a denoising-based regulariza-
tion method for neural NLP systems. Alternative seg-
mentations can be sampled from the full data distri-
bution using Forward-filtering backward-sampling al-
gorithm (Scott, 2002) or approximatively but more ef-
ficiently from an n-best list.

3.5. SentencePiece as a Special Case of
Morfessor EM+Prune

Table 1 contains a comparison between all four meth-
ods discussed in this work. To recover SentencePiece,
Morfessor EM+Prune should be run with the following
settings: The prior should be omitted entirely, leaving
only the likelihood

θ̂ = arg min
θ

{− logP (D |θ)} (7)

As the tuning parameter α is no longer needed when
the prior is omitted, the pruning criterion can be set to
a predetermined lexicon size, without automatic tun-
ing of α. Morfessor by default uses type-based training;
to use frequency information, count dampening should
be turned off. The seed lexicon should be constructed
without using forced splitting. The EM+Viterbi-prune
training scheme should be used, with Bayesian EM
turned on.

α Pre ↑ Rec ↑ F ↑
EM+P MDL keep-redundant 0.3 87.8 58.7 70.4
EM+P MDL noexpΨ 0.4 87.6 58.1 69.9
EM+P MDL nofreqdistr 0.3 86.4 58.2 69.6 ∼E
EM+P MDL 0.2 84.8 58.7 69.4 –
Morfessor Baseline 0.2 78.2 58.4 66.9 –
SentencePiece 12k – 75.2 60.0 66.8 ∼B

Table 8: Boundary Precision (Pre), Recall (Rec) and
F1-score (F) results for Turkish.

α FS Pre ↑ Rec ↑ F ↑
Morfessor Baseline 1.4 75.7 60.7 67.4 ∼E –
EM+P MDL nofreqdistr 1.0 ✓ 73.7 61.8 67.2 ∼B
Morfessor Baseline 1.2 ✓ 75.7 60.4 67.2 ∼E∼B
EM+P MDL 1.3 ✓ 73.0 62.1 67.1 – ∼B
EM+P MDL 1.2 72.8 62.0 66.9
EM+P MDL noexpΨ 0.4 ✓ 66.5 65.9 66.2
SentencePiece 64k – 65.3 61.3 63.3

Table 9: Boundary Precision (Pre), Recall (Rec) and
F1-score (F) results for North Sámi.

4. Experimental Setup
English, Finnish and Turkish data are from the Mor-
pho Challenge 2010 data set (Kurimo et al., 2010a;
Kurimo et al., 2010b). The training sets contain ca
878k, 2.9M and 617k word types, respectively. As
test sets we use the union of the 10 official test set
samples. For North Sámi, we use a list of ca 691k
word types extracted from Den samiske tekstbanken
corpus (Sametinget, 2004). and the 796 word type test
set from version 2 of the data set collected by (Grön-
roos et al., 2015; Grönroos et al., 2016).
In most experiments we use a grid search with a devel-
opment set to find a suitable value for α. The excep-
tion is experiments using autotuning or lexicon size
criterion, and experiments using SentencePiece. We
use type-based training (dampening counts to 1) with
all Morfessor methods.
For English, we force splits before and after hyphens,
and before apostrophes, e.g. “women’s-rights” is force
split into “women ++’s ++- ++rights”. For Finnish, we
force splits before and after hyphens, and after colons.
For North Sámi, we force splits before and after colons.
For Turkish, the Morpho Challenge data is prepro-
cessed in a way that makes force splitting ineffectual.

4.1. Evaluation
The ability of the training algorithm to find parameters
minimizing the Morfessor cost is evaluated by using
the trained model to segment the training data, and
loading the resulting segmentation as if it was a Mor-
fessor Baseline model. We observe both unweighted
prior and likelihood, and their α-weighted sum.
The closeness to linguistic segmentation is evaluated
by comparison with annotated morph boundaries us-
ing boundary precision, boundary recall, and boundary
F1-score (Virpioja et al., 2011). The boundary F1-
score (F-score for short) equals the harmonic mean of
precision (the percentage of correctly assigned bound-
aries with respect to all assigned boundaries) and recall
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Figure 2: Boundary Precision–Recall curve at different
tuning points, The smallest and largest α-values are
labeled.

(the percentage of correctly assigned boundaries with
respect to the reference boundaries). Precision and re-
call are calculated using macro-averages over the word
types in the test set. In the case that a word has more
than one annotated segmentation, we take the one that
gives the highest score.

4.2. Error Analysis
We perform an error analysis, with the purpose of gain-
ing more insight into the ability of the methods to
model particular aspects of morphology. We follow

the procedure used by Ruokolainen et al. (2016). It
is based on a categorization of morphs into the cate-
gories prefix, stem, and suffix. The category labels
are derived from the original morphological analysis
labels in the English and Finnish gold standards, and
directly correspond to the annotation scheme used in
the North Sámi test set.
We first divide errors into two kinds, over-segmentation
and under-segmentation. Over-segmentation occurs
when a boundary is incorrectly assigned within a
morph segment. In under-segmentation, the a cor-
rect morph boundary is omitted from the generated
segmentation. We further divide the errors by the
morph category in which the over-segmentation occurs,
and the two morph categories surrounding the omitted
boundary in under-segmentation.

5. Results
Figure 1 compares the cost components of the Mor-
fessor model across different α parameters. The low-
est costs for the mid-range settings are obtained for
the EM+Prune algorithm, but for larger lexicons, the
Baseline algorithm copes better. As expected, using
forced splits at certain characters increase the costs,
and the increase is larger than between the training al-
gorithms. As Turkish preprocessing causes the results
to be unaffected by the forced splits, we only report
results without them.
Tables 2 to 5 show the Morfessor cost of the segmented
training data for particular α values. Again, the pro-
posed Morfessor EM+Prune reaches a lower Morfessor
cost than Morfessor Baseline. Using the lateen-EM
has only minimal effect to the costs, decreasing the
total cost slightly for English and increasing for the
other languages. Turkish results include the “keep-
redundant” setting discussed below in more detail.
Figure 2 shows the Precision–Recall curves for the pri-
mary systems, for all four languages. While increasing
the Morfessor cost, forced splitting improves BPR. Ta-
bles 6 to 9 show test set Boundary Precision, Recall
and F1-score (BPR) results at the optimal tuning point
(selected using a development set) for each model, for
English, Finnish, Turkish and North Sámi, respec-
tively6. The default Morfessor EM+Prune configura-
tion (“soft” EM, full prior, forcesplit) significantly out-
performs Morfessor Baseline w.r.t. the F-score for all
languages except North Sámi, for which there is no
significant difference between the methods.
Morfessor EM+Prune is less responsive to tuning than
Morfessor Baseline. This is visible in the shorter
lines in Figures 1 and 2, although the tuning param-
eter takes values from the same range. In particular,
EM+Prune can not easily be tuned to produce very
large lexicons.

6Note that SentencePiece is not designed for aiming to-
wards a linguistic morpheme segmentation. Neither does
it attempt to minimize the Morfessor cost. Therefore, Sen-
tencePiece is included in the evaluations for context, not
as a baseline method.
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eng Characters 71.05 11.82 1.66 0.33 15.13 0.00 0.00 0.00 0.00 0.00 100.00
eng Words 0.00 0.00 0.00 0.00 100.00 55.07 5.90 8.56 0.14 4.38 23.06
eng SentencePiece 38k 17.60 10.25 0.18 0.24 71.74 26.40 2.48 2.74 0.05 2.78 65.26
eng Morfessor Baseline 10.17 2.32 0.03 0.07 87.42 22.46 2.10 4.75 0.04 1.65 67.37
eng EM+Prune MDL 15.46 2.75 0.05 0.13 81.61 19.93 1.82 4.32 0.04 1.46 70.84

fin Characters 65.23 13.80 0.67 0.57 19.73 0.00 0.00 0.00 0.00 0.00 0.00 100.00
fin Words 0.00 0.00 0.00 0.00 100.00 49.19 17.16 21.76 4.84 0.96 0.58 4.09
fin SentencePiece 13k 35.11 3.71 0.08 0.41 60.69 25.96 1.45 16.18 0.35 0.08 0.16 55.81
fin Morfessor Baseline 34.75 2.82 0.03 0.38 62.02 24.57 0.86 16.31 0.15 0.04 0.20 57.63
fin EM+Prune MDL 29.34 2.20 0.03 0.26 68.18 24.68 0.90 15.95 0.29 0.05 0.19 57.60

sme Characters 81.44 6.80 11.76 0.00 0.00 0.00 0.00 100.00
sme Words 0.00 0.00 100.00 52.92 13.15 4.43 0.61 28.64
sme SentencePiece 64k 30.10 4.52 65.38 31.35 3.96 3.09 0.20 61.40
sme Morfessor Baseline 23.27 3.02 73.71 33.16 2.22 3.40 0.10 60.99
sme EM+Prune MDL 23.35 4.41 72.25 30.48 3.10 3.23 0.17 62.84

Table 10: Error analysis for English (eng, α = 0.9), Finnish (fin, α = 0.02), and North Sámi (sme, α = 1.0).
All results without forcesplit. Over-segmentation and under-segmentation errors reduce precision and recall,
respectively.

Pre-pruning of redundant substrings gives mixed re-
sults. For Turkish, both Morfessor cost and BPR
are degraded by the pre-pruning, but for the other
three languages the pre-pruning is beneficial or neu-
tral. When tuning α to very high values (less segmen-
tation), pre-pruning of redundant substrings improves
the sensitivity to tuning. The same effect may also be
achievable by using a larger seed lexicon. We perform
most of our experiments with pre-pruning turned on.
To see the effect of pre-pruning on the seed lexicon,
we count the number of subwords that are used in the
gold standard segmentations, but not included in seed
lexicons of various sizes. Taking Finnish as an example,
we see 203 subword types missing from a 1 million
substring seed lexicon without pre-pruning. Turning
on pre-pruning decreases the number of missing types
to 120. To reach the same number without using pre-
pruning, a much larger seed lexicon of 1.7M substrings
must be used.
Omitting the frequency distribution appears to have
little effect on Morfessor cost and BPR. Turning off
Bayesian EM (noexpΨ) results in a less compact lexi-
con resulting in higher prior cost, but improves BPR
for two languages: English and Turkish.
Table 10 contains the error analysis for English,
Finnish and North Sámi. For English and North
Sámi, EM+Prune results in less under-segmentation
but worse over-segmentation. For Finnish these re-
sults are reversed. However, the suffixes are often bet-
ter modeled, as shown by lower under-segmentation on
SUF-SUF (all languages) and STM-SUF (English and
North Sámi).

6. Conclusion
We propose Morfessor EM+Prune, a new training al-
gorithm for Morfessor Baseline. EM+Prune reduces
search error during training, resulting in models with
lower Morfessor costs. Lower costs also lead to im-
proved accuracy when segmentation output is com-
pared to linguistic morphological segmentation.
We compare Morfessor EM+Prune to three previously
published segmentation methods applying unigram
language models. We find that using the Morfessor
prior is beneficial when the reference is linguistic mor-
phological segmentation.
In this work we focused on model cost and linguis-
tic segmentation. In future work the performance of
Morfessor EM+Prune in applications will be evaluated.
Also, a new frequency distribution prior, which is the-
oretically better motivated or has desirable properties,
could be formulated.
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Abstract

This article describes the Aalto University
entry to the English-to-Finnish news trans-
lation shared task in WMT 2016. Our seg-
mentation method combines the strengths
of rule-based and unsupervised morphol-
ogy. We also attempt to correct errors in
the boundary markings by post-processing
with a neural morph boundary predictor.

1 Introduction

Using words as translation tokens is problem-
atic for synthetic languages with rich inflection,
derivation or compounding. Such languages have
very large vocabularies, leading to sparse statistics
and many out-of-vocabulary words. Differences
in morphological complexity between source and
target languages also complicate alignment.
A common method for alleviating these prob-

lems is to segment the morphologically richer side
as a pre-processing step. Over-segmentation is
detrimental, however, as longer windows of his-
tory need to be used, and useful phrases become
more difficult to extract. It is therefore important
to find a balance in the amount of segmentation.
We consider the case that there are linguistic

gold standard segmentations available for the mor-
phologically complex target language. Even if
there is no rule-based morphological analyzer for
the language, a limited set of gold standard seg-
mentations can be used for training a reasonably
accurate statistical segmentation model in a super-
vised or semi-supervised manner (Ruokolainen et
al., 2014; Cotterell et al., 2015).
While using a linguistically accurate morpho-

logical segmentation in a phrase-based SMT sys-
tem may sound like a good idea, there is evi-
dence that shows otherwise. In general, over-
segmentation seems to be a larger problem for

NLP applications than under-segmentation (Vir-
pioja et al., 2011). In the case of SMT, lin-
guistic morphs may provide too high granularity
compared to the second language, and deteriorate
alignment (Habash and Sadat, 2006; Chung and
Gildea, 2009; Clifton and Sarkar, 2011). More-
over, longer sequences of units are needed in
the language model and the translation phrases to
cover the same span of text.
An unsupervised morphological segmentation

may alleviate these problems. A method based
on optimizing the training data likelihood, such
as Morfessor (Creutz and Lagus, 2002; Creutz
and Lagus, 2007; Virpioja et al., 2013), ensures
that common phenomena are modeled more ac-
curately, for example by using full forms for
highly-frequent words even if they consist of mul-
tiple morphemes. Data-driven methods also allow
tuning the segmentation granularity, for example
based on symmetry between the languages in a par-
allel corpus (Grönroos et al., 2015).
To combine the advantages of linguistic seg-

mentation and data-driven segmentation, we pro-
pose a hybrid approach for morphological segmen-
tation. We optimize the segmentation in a data-
driven manner, aiming for a similar granularity as
the second language of the language pair, but re-
stricting the possible set of segmentation bound-
aries to those between linguistic morphs. That is,
the segmentation method may decide to join any of
the linguistic morphs, but it cannot add new seg-
mentation boundaries to known linguistic morphs.
We show that it is possible to improve on the lin-

guistically accurate segmentation by reducing the
amount of segmentation in an unsupervised man-
ner.

1.1 Related work
Rule-based and statistical segmentation for SMT
have been extensively studied in isolation (Virpi-
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Figure 1: A pipeline overview of training of the system and using it for translation. Main contributions
are hilighted with numbers 1-3. ORM is short for Omorfi-restricted Morfessor.

oja et al., 2007; Fishel and Kirik, 2010; Luong et
al., 2010), and also the use of system combina-
tion to combine their strengths has been examined
(De Gispert et al., 2009; Rubino et al., 2015; Piri-
nen et al., 2016).
Prediction of morph boundary types has been

used in conjunction with compound splitting.
Stymne and Cancedda (2011) apply rule-based
compound splitting in the pre-processing stage,
and a conditional random field with rich linguistic
features for generating novel compounds in post-
processing. Coalescence of compound parts in the
translation output is promoted using POS-tag fea-
tures. Cap et al. (2014) extend the post-predictor
to also inflect the compound modifiers e.g. to add
a linking morpheme.
Stymne et al. (2013) investigate several methods

for splitting and merging compounds when trans-
lating into Germanic languages, and provide an ex-
tensive reading list on the topic.

2 System overview

An overview of the system is shown in Figure 1.
The three main contributions of this work are indi-
cated by numbered circles:

1. Combining rule-based morphological seg-
mentation (Omorfi) to data-driven morpho-
logical segmentation (Morfessor).

2. Rescoring n-best lists with TheanoLM
(Enarvi and Kurimo, 2016).

3. Correcting boundary markings with post-
processing predictor.

Our system extends the phrase-based SMT sys-
tem Moses (Koehn et al., 2007) to perform seg-
mented translation, by adding pre-processing and
post-processing steps, with no changes to the de-
coder.
The standard pre-processing steps not specified

in Figure 1 consist of normalization of punctua-
tion, tokenization, and statistical truecasing. All
of these were performed with the tools included in
Moses. The pre-processing steps are followed by
morphological segmentation.
In addition, the parallel data was cleaned and

duplicate sentences were removed. Cleaning was
performed after morphological segmentation, as
the segmentation can increase the length in tokens
of a sentence.
The post-processing steps include rescoring of

the n-best list, boundary prediction and desegmen-
tation. These are followed by the standard post-
processing steps, reversing the pre-processing
steps: detruecasing and detokenization.
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System Tokens Segmentation

Words 3 hyötyajoneuvojen tekniset tienvarsitarkastukset
[commercial vehicles’] [technical] [roadside inspections]

Omorfi 11 hyöty@ ajo@ neuvo +j +en teknise +t tien@ varsi@ tarkastukse +t
[utility] [drive] [counsel] [+Pl] [+Gen] [technical] [+Pl] [road] [side] [inspection] [+Pl]

ORM 5 hyötyajoneuvo +jen tekniset tienvarsi@ tarkastukset
[commercial vehicle] [+Pl +Gen] [technical] [roadside] [inspections]

Source 6 technical roadside inspection of commercial vehicles

Table 1: Worked example of two-stage morphological segmentation, beginning with rule-based Omorfi
segmentation and followed by Omorfi-restrictedMorfessor (ORM). The glosses below the segmentations
show approximate meaning of the segments (Pl = plural suffix, Gen = genitive suffix).

2.1 Morphological segmentation
An example of the morphological segmentation is
shown in Table 1.

2.1.1 Omorfi segmentation
We begin the morphological segmentation by ap-
plying the segmentation tool from Omorfi (Piri-
nen, 2015). Hyphens removed by Omorfi are rein-
troduced.
Omorfi outputs 5 types of intra-word bound-

aries, which we mark in different ways. Com-
pound modifiers, identified by the WB or wB
boundary type, are marked with a reserved sym-
bol ‘@’ at the right edge of the morph. Suf-
fixes, identified by a leading morph boundary
MB or derivation boundary DB, are marked with
a ‘+’ at the left edge. Boundaries of the type
STUB (other stemmer-type boundary) are removed.
This marking scheme leaves the compound head,
or last stem of the word, unmarked. E.g.
“yli{WB}voimai{STUB}s{MB}i{MB}a” is marked
as ”yli@ voimais +i +a”.
Words not identified by Omorfi are collected

in a separate vocabulary, and treated as unseg-
mentable.

2.1.2 Restricted Morfessor Baseline
In order to force the Morfessor method to fol-
low the linguistic morphs produced by Omorfi, we
added some new features to the Morfessor Base-
line implementation by Virpioja et al. (2013). The
new extension, Restricted Morfessor Baseline, is
able to remove any of the given intra-word bound-
aries, but cannot introduce any new ones.
The standard training algorithm of Morfessor it-

erates over the word forms, testing whether to split
the corresponding string to two parts or leave it as
it is. If the string is split, the testing descends re-
cursively to the substrings. The segmentation de-

cisions are stored in a binary tree structure, where
each node corresponds to a string. The root nodes
are full word forms and leaf nodes are morphs.
The middle nodes are substrings shared by sev-

eral word forms, which means that if two word
forms have different restrictions on the same sub-
string, some of the restrictions may be violated.
While the amount of violations was in practice
very small, we ensured that no restrictions were
violated in the end by applying the recursive al-
gorithm only for the two first epochs, and then
switching to Viterbi training.
In Viterbi training, each word is re-segmented

to the most likely segmentation given the current
model parameters using an extension of the Viterbi
algorithm. We modified the implementation of
Virpioja et al. (2013) to remove the previous seg-
ments of the word from the parameters before re-
analyzing the word, and re-adding the segments of
the new optimal segmentation afterwards. Addi-
tive smoothing with smoothing constant 1.0 was
applied in the Viterbi search.
Prior to the Viterbi training, we flattened the tree

structure so that the root nodes (word forms) link
directly to the leaf nodes (morphs), thus remov-
ing any shared substrings nodes that are not actual
morphs. This way all word forms are segmented
independently and all the restrictions are followed.

2.1.3 Tuning the amount of segmentation

Omorfi-restricted Morfessor was tuned following
Grönroos et al. (2015) to bring the number of to-
kens on the Finnish target side as close as possi-
ble to the English source side. The corpus weight
hyper-parameter α was chosen by minimizing the
sentence-level difference in token counts between
the English and the segmented Finnish sides of the
parallel corpus.
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2.2 Rescoring n-best lists

Segmentation of the word forms increases the dis-
tances spanned by dependencies that should be
modeled by the language model. To compensate
for this, we apply a strong recurrent neural lan-
guage model, TheanoLM. A recurrent language
model is able to use arbitrarily long contexts with-
out suffering from data sparsity, as opposed to n-
gram languagemodels, which are limited to a short
context window. The additional language model is
used in a separate rescoring step, to speed up trans-
lation, and for ease of implementation.
The TheanoLM model was trained on morpho-

logically segmented data. Morphs occurring less
than 1000 times in the full monolingual data were
removed from the vocabulary, and replaced with
the tag <UNK>. To create a class vocabulary,
the morphs were embedded in a 300-dimensional
space using word2vec (Mikolov et al., 2013). The
embeddings were clustered into 2000 classes, us-
ing agglomerative clustering with cosine distance.
Due to TheanoLM limitations, only the Europarl
and News data (but not CommonCrawl) were used
for training.
The TheanoLM parameters were: 100 nodes in

the projection layer, 300 LSTM nodes in the hid-
den layer, dropout rate 0.25, adam optimization
with initial learning rate 0.01, and minibatch 16.

2.3 Morph boundary correction

One benefit of segmented translation is the ability
to generate new compounds and inflections, that
were not seen in the training data. However, the
ability can also lead to errors, e.g when an English
word frequently aligned to a compoundmodifier is
translated using such a morph, even though there
is no compound head to modify. The “dangling”
morph boundary marker will then cause the space
to be omitted, forming an incorrect compoundwith
whatever word happens to follow.
For example, the Finnish pronoun moni (many)

is also a frequent prefix, as in monitoimi- (multi-
purpose) ormonikulttuurinen (multicultural). This
resulted in an erroneous novel compound in
moniliberaalien keskuudessa (“among the multi-
liberals”), which was corrected by introducing a
space between moni and liberaalien, leading to a
correct translation (“many among the liberals”).
In the opposite type of error, compounds may be

translated as separate words, or hyphenated com-
pounds translated with the hyphen omitted.

We trained a neural network predictor to cor-
rect such errors by predicting the boundary type
{space, empty, hyphen} as an additional post-
processing step before joining the tokens.
The neural network takes as input both a to-

ken level representation, in the form of the same
word2vec embeddings as used in rescoring, and a
character level representation windowed to 4 char-
acters before and after the boundary. The tokens
are encoded by a bidirectional network of Gated
Recurrent Units (Cho et al., 2014), while the char-
acters are encoded by a feed-forward network.
Even though the boundary markers in the trans-

lation output are unreliable, they are a strong clue.
Our predictor has access to the translated markers.
During training markers were randomly corrupted
to avoid relying too much on them.

2.4 Moses configuration

We used GIZA++ alignment. As decoding
LMs, we used two SRILM n-gram models with
modified-KN smoothing: a 3-gram and 5-gram
model, trained from different data. Many Moses
settings were left at their default values: phrase
length 10, grow-diag-final-and alignment sym-
metrization, msd-bidirectional-fe reordering, and
distortion limit 6.
The feature weights were tuned using MERT

(Och, 2003), with BLEU (Papineni et al., 2002)
of the post-processed hypothesis against a devel-
opment set as the metric. 20 random restarts
per MERT iteration were used, with iterations re-
peated until convergence.
The rescoring weights were tuned with a newly

included script in Moses, which uses kb-MIRA in-
stead of MERT.

3 Data

Our system participates in the constrained condi-
tion of the shared task. As parallel data, we used
the Europarl-v8 and Wikititles corpora, resulting
in 1 846 609 sentences after applying the Omorfi-
restricted Morfessor segmentation and cleaning.
As monolingual data, we used the Finnish

side of Europarl-v8, news.2014.fi.shuffled.v2,
news.2015.fi.shuffled and Common Crawl. The
total size of monolingual data after cleaning was
133 848 615 sentences, 2 135 919 860 morph to-
kens, and 11 771 367 morph types. Setting the
frequency threshold to 1000 occurrences for the
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%BLEU, newstest Example sentence
Configuration 2015 2016 Other applications could focus on muscle cells and insulin-producing cells, he added.

Omorfi-restricted Morfessor 10.77 11.27 Muissa sovelluksissa voi keskittyä lihas solujen ja insuliinia tuottavien solujen, hän lisäsi.
+boundary correction 10.83 11.27 Muissa sovelluksissa voi keskittyä lihassolujen ja insuliinia tuottavien solujen, hän lisäsi.

+rescoring 11.17 11.73 Muut sovellukset voivat keskittyä lihas soluja ja insuliinia tuottavia soluja, hän lisäsi.
+rescoring +boundary corr. 11.21 11.72 Muut sovellukset voivat keskittyä lihassoluja ja insuliinia tuottavia soluja, hän lisäsi.

Omorfi 10.00 10.59 Muut sovellukset voisi keskittyä lihassolujen ja insuliinia tuottavien soluja, hän lisäsi.
+boundary correction 10.07 10.61 Muut sovellukset voisi keskittyä lihassolujen ja insuliinia tuottavien soluja, hän lisäsi.

+rescoring 10.70 11.11 Muut sovellukset voivat keskittyä lihassoluja ja insuliinia tuottavien soluja, hän lisäsi.
+rescoring +boundary corr. 10.78 11.11 Muut sovellukset voivat keskittyä lihassoluja ja insuliinia tuottavien soluja, hän lisäsi.

Word baseline 10.48 10.65 Muut sovellukset voisivat keskittyä lihaksia ja insuliinia tuottavien solujen-, hän lisäsi.

Reference translation Muut sovelluskohteet voisivat keskittyä lihassoluihin ja insuliinia tuottaviin soluihin, hän lisäsi.

Table 2: Results of automatic evaluation, in BLEU percentage points.

TheanoLM morph lexicon reduced the number of
morph types to 121 735.
The complete monolingual data including the

Common Crawl was only used for creating the
morph lexicon and for training the 3-gram LM. For
the 5-gram LM, the TheanoLM and the boundary
predictor, the Common Crawl was omitted.
Because hyphenated compounds are much less

frequent than non-hyphenated words, we enriched
the training data for the boundary predictor by
adding the list of words compounds containing a
single hyphen and occurring more than 10 times in
the full monolingual corpus.

4 Results

Results are summarized in Table 2, together with
example translations produced by the different sys-
tem configurations.
The Omorfi-restricted Morfessor segmentation

leads consistently to an improvement over directly
using the Omorfi segmentation. For all config-
urations on the newstest2016 set, and for new-
stest2015 without rescoring, the improvement is
over +0.6 BLEU. On newstest2015 with rescoring,
the improvement is slightly smaller, +0.47 BLEU.
Adding the TheanoLM rescoring increases

BLEU between +0.4 and +0.7 BLEU. The in-
crease is larger for the more aggressively seg-
mented Omorfi system, supporting the conclusion
that a strong language model is needed to compen-
sate for the longer sequences.
In total, our best system results in a +1 BLEU

improvement over the word baseline.
Boundary prediction gave a modest improve-

ment of under +0.1 BLEU on the newstest2015
set, the effect on the newstest2016 set was neutral.
While the predictor works reliably for the correct

Finnish text it was trained on, manual inspection
shows that the performance is erratic for disfluent
translation output. Even while the minor cosmetic
improvements are more common than errors, the
benefit is hard to quantify.
Due to a mistake during data pre-processing,

one of the n-gram language models penalizes the
use of numbers. The problem affects all the evalu-
ated systems and lowers the overall scores. How-
ever, it does not affect the increase in BLEU from
the use of Omorfi-restricted Morfessor or rescor-
ing. We verified this using BLEU of the test set
with all source sentences containing numbers re-
moved.

5 Conclusions

We propose a new morphological segmentation
method, combining the strengths of rule-based and
unsupervised morphology. We optimize the seg-
mentation in a data-driven manner, aiming to bal-
ance granularity between the two languages, while
restricting segmentation to a subset of the linguis-
ticmorph boundaries. Using this segmentation, we
improve SMT quality over the linguistically accu-
rate segmentation.
Using a neural morph boundary predictor to cor-

rect errors in the boundary markings does not lead
to an improvement in BLEU.
In total, our best system results in a +1 BLEU

improvement over the word baseline.
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Abstract
This article describes the Aalto Uni-
versity entry to the English-to-Finnish
shared translation task in WMT 2015.
The system participates in the con-
strained condition, but in addition we
impose some further constraints, using
no language-specific resources beyond
those provided in the task. We use
a morphological segmenter, Morfessor
FlatCat, but train and tune it in an un-
supervised manner. The system could
thus be used for another language pair
with a morphologically complex tar-
get language, without needing modifi-
cation or additional resources.

1 Introduction
In isolating languages, such as English, suit-
able smallest units of translation are easy to
find using whitespace and punctuation char-
acters as delimiters. This approach of us-
ing words as the smallest unit of transla-
tion is problematic for synthetic languages
with rich inflection, derivation or compound-
ing. Such languages have very large vocabu-
laries, leading to sparse statistics and many
out-of-vocabulary words.

A synthetic language uses fewer words than
an isolating language to express the same
sentence, by combining several grammatical
markers into each word and using compound
words. This difference in granularity is prob-
lematic in alignment, when a word in the iso-
lating language properly aligns with only a
part of a word in the synthetic language.

In order to balance the number of tokens
between target and source, it is often possi-

ble to segment the morphologically richer side.
Oversegmentation is detrimental, however, as
longer windows of history need to be used,
and useful phrases become more difficult to
extract. It is therefore important to find a
balance in the amount of segmentation. A
linguistically accurate segmentation may be
oversegmented for the task of translation, if
some of the distinctions are either unmarked
or marked in a similar way in the other lan-
guage.

An increase in the number of tokens means
that the distance spanned by dependencies
becomes longer. Recurrent Neural Network
(RNN) based language models have been
shown to perform well for English (Mikolov
et al., 2011). Their strength lies in being the-
oretically capable of modeling arbitrarily long
dependencies.

Moreover, a huge vocabulary is particularly
detrimental for neural language models due to
their computationally heavy training and need
to marginalize over the whole vocabulary dur-
ing prediction. As morphological segmenta-
tion can reduce the vocabulary size consider-
ably, using RNN language models seems even
more suitable for this approach.

Our system is designed for translation in the
direction from a morphologically less complex
to a more complex language. The opposite
direction – simplifying morphology – has re-
ceived more attention, especially with English
as the target language.

Of the target languages in this year’s task,
Finnish is the most difficult to translate into,
shown by Koehn (2005) and reconfirmed by
the evaluations of this shared task. Even
though the use of supervised linguistic tools
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(such as taggers, parsers, or morphological an-
alyzers) was allowed in the constrained con-
dition, our method does not use them. It is
therefore applicable to other morphologically
complex target languages.

1.1 Related work
The idea of transforming morphology to im-
prove statistical machine translation (SMT) is
well established in the literature. An early ex-
ample is Nießen and Ney (2004), who apply
rule-based morphological analysis to enhance
German→English translation.

In particular, many efforts have focused on
increasing the symmetry between languages
in order to improve alignment. Lee (2004)
uses this idea for Arabic→English translation.
In this translation direction, symmetry is in-
creased through morphological simplification.

It has been shown that a linguistically cor-
rect segmentation does not coincide with the
optimal segmentation for purposes of align-
ment, both using rule-based simplification of
linguistic analysis (Habash and Sadat, 2006),
and through the use of statistical methods
(Chung and Gildea, 2009).

Using segmented translation with unsuper-
vised statistical segmentation methods has
yielded mixed results. Virpioja et al. (2007)
used Morfessor Categories-MAP in transla-
tion between three Nordic languages, in-
cluding Finnish, while Fishel and Kirik
(2010) used Morfessor Categories-MAP in
English↔Estonian translation. In these stud-
ies, segmentation has in many cases worsened
BLEU compared to word-based translation.
The main benefit of segmentation has been a
decrease in the ratio of untranslated words.

Salameh et al. (2015) translate
English→Arabic, and find that segmen-
tation is most useful when the extracted
phrases are morphologically productive, and
that using a word-level language model
reduces this productivity (albeit increasing
the BLEU score).

The desegmentation process, and the ef-
fect of different strategies for marking the
word-internal token boundaries, have mostly
been examined in recombining split compound
words. Stymne and Cancedda (2011) explore
different marking strategies, including use of
part-of-speech tags, in order to allow the trans-

lation system to produce compounds unseen in
the training data.

2 System overview
An overview of the system is shown in Fig-
ure 1. The four main contributions of this
work are indicated by numbered circles:

1. Use of unsupervised Morfessor FlatCat
(Grönroos et al., 2014) for morphological
segmentation,

2. Tuning the morphological segmentation
directly to balance the number of trans-
lation tokens between source and target,

3. A new marking strategy for morph
boundaries,

4. Rescoring n-best lists with RNNLM
(Mikolov et al., 2010).

Our system extends an existing phrase-
based SMT system to perform segmented
translation, by adding pre-processing and
post-processing steps, with no changes to the
decoder. As translation system to be ex-
tended, we used the Moses release 3.0 (Koehn
et al., 2007). We used GIZA++ alignment,
and a 5-gram LM with modified-KN smooth-
ing. Many Moses settings were left at their
default values: phrase length 10, grow-diag-
final-and alignment symmetrization, msd-
bidirectional-fe reordering, and distortion
limit 6.

The standard pre-processing steps not spec-
ified in Figure 1 consist of normalization
of punctuation, tokenization, and statistical
truecasing. All three of these were performed
with the tools included in Moses.

In addition, the parallel data was cleaned
and duplicate sentences were removed. Clean-
ing was performed after morphological seg-
mentation, as the segmentation can increase
the length in tokens of a sentence.

The post-processing steps are the reverse
of the pre-processing steps: desegmentation,
detruecasing, and detokenization. Rescor-
ing of the n-best list was done before post-
processing.

The feature weights were tuned using
MERT (Och, 2003), with BLEU (Papineni
et al., 2002) of the post-processed hypothesis
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Figure 1: A pipeline overview of training and testing of the system. Main contributions are
hilighted with numbers 1-4.

against a tuning set as the metric. 20 random
restarts per MERT iteration were used, with
iterations repeated until convergence.

A similar MERT procedure was also used for
choosing the interpolation weights for rescor-
ing, with 100 random restarts in a single iter-
ation. A single-iteration approach was chosen,
as there was no need to translate a new n-best
list during the MERT for rescoring.

2.1 Morphological segmentation

For morphological segmentation, we use the
latest Morfessor variant, FlatCat (Grönroos
et al., 2014). Morfessor FlatCat is a proba-
bilistic method for learning morphological seg-
mentations, using a prior over morph lexicons
inspired by the Minimum Description Length
principle (Rissanen, 1989).

Morfessor FlatCat applies a Hidden Markov
model for morphotactics. Compared to
Morfessor Baseline, it provides morph cat-
egory tags (stem, prefix, suffix) and has
superior consistency especially in compound
word splitting. In contrast to Categories-
MAP (Creutz and Lagus, 2005), used for sta-
tistical machine translation e.g. by Clifton
and Sarkar (2011), it supports semi-supervised

learning and hyper-parameter tuning.
No annotated data was used in the training

of Morfessor FlatCat, neither in training nor
parameter tuning. Instead of aiming for a lin-
guistic morphological segmentation, our goal
was to balance the number of translation to-
kens between source and target languages.

In order to bring the number of tokens
on the Finnish target side closer to the En-
glish source side, we segmented the Finnish
text with an unsupervised Morfessor FlatCat
model, tuned specifically to achieve this bal-
ance. The corpus weight hyper-parameter α
was chosen by minimizing the sentence-level
difference in token counts between the English
and the segmented Finnish sides of the parallel
corpus

α = arg min
α

∑
(e,f)∈(E,F )

∣∣∣#(e)−#
(
M(f ; α)

)∣∣∣,
(1)

where # gives the number of tokens in the sen-
tence, and M(f ; α) is the segmentation with a
particular α.

Numbers and URLs occurring in the parallel
corpus were passed through Morfessor unseg-
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mented, but translated by Moses without any
special handling.

2.2 Morph boundary marking strategy
In the desegmentation step, consecutive to-
kens are concatenated either with or with-
out an intermediary space. Morph boundaries
must be distinguished from word boundaries,
so that the desegmentation step can recon-
struct the words correctly. There are various
ways to mark the boundaries, some of them
shown in Table 1.

A common way is to attach a symbol to all
morphs on the right (or left) side of the morph
boundary. We call this strategy right-only.

Alternatively both-sides of the boundary can
be marked. In this strategy, a decision must
be made whether to be aggressive or conserva-
tive in joining morphs, if the translation sys-
tem outputs an incorrect sequence where the
markers do not match up on both sides. For
these experiments we chose the conservative
approach, removing the unmatched marker
from a half-marked boundary, and treating it
as a word boundary.

A downside of the right-only and both-sides
strategies is that a stem is marked differently
depending on whether it has a prefix attached
or not, even if the surface form of the stem
does not change.

The morph categories produced by FlatCat
can be used for marking boundaries according
to the structure of the word. We can mark
affixes from the side that points towards the
stem, leaving stems unmarked regardless of
the presence of affixes. However, this would
leave the boundaries between compound parts
indistinguishable from word boundaries, mak-
ing some additional marking necessary.

Marking affixes by category and compound
boundaries with a special linking token is
called the compound-symbol strategy. Instead
marking the last morpheme in the compound
modifiers (non-final compound parts), results
in the compound-left strategy.

After initial unimpressive results with the
compound marking strategies, we concluded
that segmenting the compound modifiers does
not lead to productive translation phrases,
in contrast to boundaries between compound
parts and boundaries separating inflective af-
fixes. In response, we formulated the advanced

Strategy Example
Surface form supistamistavoitteistaan
Segmentation supistaSTMmisSUFtavoitteistaSTManSUF
Translation of their reduction targets
right-only supista +mis +tavoitteista +an
both-sides supista+ +mis+ +tavoitteista+ +an
compound-sym supista +mis +@+ tavoitteista +an
compound-left supista +mis@ tavoitteista +an
advanced supistamis+ tavoitteista +an

Table 1: Morph boundary marking strategies.

marking strategy, which goes beyond bound-
ary marking to modify the segmentation, by
rejoining the morphs in the modifier parts of
compounds.

The sequence of morph categories is used for
grouping the morphs into compound parts. A
word consists of one or more compound parts.
Each compound part consists of exactly one
stem, and any number of preceding prefixes
and following suffixes.

CompoundPart = Pre∗ Stm Suf∗

Word = CompoundPart+ (2)

For all compound parts except the last one,
the affixes are rejoined to their stem. Morphs
of length 5 or above were treated as stems,
regardless of the category assigned to them by
FlatCat.

Prefixes and compound modifiers are
marked with a trailing ’+’, suffixes are marked
with a leading ’+’, and the stems of the word-
final compound parts are left unmarked.

2.3 Rescoring n-best lists
Segmentation of the word forms increases
the distances spanned by dependencies that
should be modeled by the language model. To
compensate this, we apply a strong recurrent
neural network language model (RNNLM)
(Mikolov et al., 2010). The additional lan-
guage model is used in a separate rescoring
step, to speed up translation, and for ease of
implementation.

The RNNLM model was trained on morpho-
logically segmented data. Morphs occurring
only once were removed from the vocabulary,
and replaced with <UNK>. The parameters
were set to 300 nodes in the hidden layer, 500
vocabulary classes, 2M direct connections of
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Monolingual data Parallel data
Purpose news2014 v2 europarl v8 wikititles newsdev2015 test2006
Training Morfessor fi fi fi
Training LMs fi fi fi
Training Moses en – fi en – fi
Tuning Morfessor en – fi
Tuning RNNLM fi
Tuning Moses en – fi
Development testing en – fi

Sentences 1378582 1926114 153728 1500 2000

Table 2: The data sets used for different purposes. “en–fi” signifies that parallel data was used,
“fi” signifies monolingual data, or using only the Finnish side of parallel data.

order 4, backpropagation through 5 time steps,
with blocksize 25.

At translation time, 1000-best lists of morph
segmented hypotheses produced by Moses
were scored using the RNNLM.

The Moses features were extended by in-
cluding the RNNLM score as an additional fea-
ture. A new linear combination of the features
was optimized with MERT, and used for the
final hypothesis ranking. For the BLEU mea-
surement in MERT the segmented hypothe-
sis was post-processed (including desegmenta-
tion) and compared to an un-preprocessed ref-
erence.

3 Data

The data sets used in training and tuning are
shown in Table 2. Both europarl v8 and wik-
ititles were used as parallel training data, but
only europarl was used for tuning the hyper-
parameter α, as the titles do not follow a typ-
ical sentence structure.

The Finnish side of the parallel sets was
used to extend the monolingual training data.
The monolingual data were concatenated for
LM training, instead of interpolating different
n-gram models.

After cleaning, the combined parallel train-
ing data contained 2,004,450 sentences. The
parallel set used for testing during develop-
ment is test2006, a europarl subset of 2000
sentences sampled from three last months of
2000.1

1http://matrix.statmt.org/test_sets/list

dev-test test
test2006 newstest2015

Configuration BLEU BLEU
advanced, α = 0.7 .147 .112

+rescoring .147 .116
advanced, α = 0.4 .145 .112
both-sides .141 .114
compound-left .140 .113
compound-sym .139 .111
right-only .139 .111
(word) .146 .100

Table 3: Results of evaluation.

4 Results

Table 3 shows cased BLEU scores on the in-
domain development set and out-of-domain
test set, for various configurations. The en-
try marked word is a baseline system without
segmentation.

When evaluating on the in-domain develop-
ment set, most configurations that use seg-
mentation achieve worse BLEU compared to
the word baseline. Only the best configura-
tions, using the advanced strategy, are able to
achieve slightly higher BLEU.

Switching domains to the test corpus leads
to a larger difference, in favor of the segment-
ing methods. The choice of morph boundary
marking strategy and the sentence-based tun-
ing of the segmentation had a moderate effect
on BLEU. The addition of rescoring did not
improve BLEU on the in-domain dev-test cor-
pus, but resulted in a slight improvement on
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the out-of-domain test corpus.
The proportion of word tokens that were

segmented into at least two parts was 19.8%.
The joining of compound modifiers did not
have a large effect on the total number of to-
kens, causing a reduction from 49,524,520 to
49,475,291 (0.1%).

Using the sentence-level balancing, the op-
timal value for the corpus weight hyper-
parameter α was 0.7. The change in the num-
ber of tokens caused by the joining of com-
pound modifiers did not affect the optimum.
Balancing the token count of the whole cor-
pus yielded a much lower α of 0.4, leading to
oversegmentation and lower BLEU.

The weight of the RNNLM in the final linear
combination was 0.092, compared to 0.119 of
the n-gram LM. This indicates that it is able
to complement the n-gram model, but does
not dominate it.

In the human evaluation of WMT15, the
system with advanced morph boundary mark-
ing strategy and RNNLM rescoring was
ranked in tied second place of five methods
participating in the constrained condition.

5 Conclusions

To improve English-to-Finnish translation in a
phrase-based machine translation system, we
tuned an unsupervised morphological segmen-
tation preprocessor to balance the token count
between source and target languages. Ap-
propriate choice of morph boundary marking
strategy and amount of segmentation brought
the BLEU score slightly above a word-based
baseline, in contrast to some previous work
with unsupervised segmentation (Virpioja et
al., 2007; Fishel and Kirik, 2010).

To compensate for the need of longer con-
texts, we added a recurrent neural network
language model as a rescoring step. It did not
help for the in-domain development corpus,
but improved results on the out-of-domain test
corpus.

Possible directions for future work include
Minimum Bayes Risk combination of trans-
lation hypotheses from systems trained with
different segmentations and marking strate-
gies (De Gispert et al., 2009), using morphol-
ogy generation instead of segmented transla-
tion (Clifton and Sarkar, 2011), and improving

the alignment directly in addition to balancing
of token counts (Snyder and Barzilay, 2008).
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Abstract
This article describes the Aalto University
entry to the WMT18 News Translation
Shared Task. We participate in the mul-
tilingual subtrack with a system trained
under the constrained condition to trans-
late from English to both Finnish and Es-
tonian. The system is based on the Trans-
former model. We focus on improving
the consistency of morphological segmenta-
tion for words that are similar orthograph-
ically, semantically, and distributionally;
such words include etymological cognates,
loan words, and proper names. For this,
we introduce Cognate Morfessor, a multi-
lingual variant of the Morfessor method.
We show that our approach improves the
translation quality particularly for Esto-
nian, which has less resources for training
the translation model.

1 Introduction
Cognates are words in different languages,
which due to a shared etymological origin are
represented as identical or nearly identical
strings, and also refer to the same or similar
concepts. Ideally the cognate pair is similar or-
thographically, semantically, and distribution-
ally. Care must be taken with “false friends”,
i.e. words with similar string representation
but different semantics. Following usage in
Natural Language Processing, e.g. (Kondrak,
2001), we use this broader definition of the
term cognate, without placing the same weight
on etymological origin as in historical linguis-
tics. Therefore we accept loan words as cog-
nates.

In any language pair written in the same al-
phabet, cognates can be found among names
of persons, locations and other proper names.
Cognates are more frequent in related lan-
guages, such as Finnish and Estonian. These

additional cognates are words of any part-of-
speech, which happen to have a shared origin.

In this work we set out to improve morpho-
logical segmentation for multilingual transla-
tion systems with one source language and two
related target languages. One of the target
languages is assumed to be a low-resource lan-
guage. The motivation for using such a system
is to exploit the large resources of a related
language in order to improve the quality of
translation into the low-resource language.

Consistency of the segmentations is impor-
tant when using subword units in machine
translation. We identify three types of con-
sistency in the multilingual translation setting
(see examples in Table 1):

(i) The benefit of consistency is most evi-
dent when the translated word is an identical
cognate between the source and a target lan-
guage. If the source and target segmentations
are consistent, such words can be translated
by sequentially copying subwords from source
to target.

(ii) Language-internal consistency means
that when a subword boundary is added, its lo-
cation corresponds to a true morpheme bound-
ary, and that if some morpheme boundaries
are left unsegmented, the choices are consis-
tent between words. This improves the produc-
tivity of the subwords and reduces the risk of
introducing short, word-internal errors at the
subword boundaries. In the example *saami
+ miseksi, choosing the wrong second morph
causes the letters mi to be accidentally re-
peated.

(iii) When training a multilingual model, a
third form of consistency arises between the
different target languages. An optimal seg-
mentation would maximize the use of mor-
phemes with cross-lingually similar string rep-
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type consistent en fi et
(i) yes On + y + sz + kie + wicz On + y + sz + kie + wicz On + y + sz + kie + wicz
(ii) yes gett + ing saa + mise + ksi saa + mise + ks

work + ing toimi + mise + ksi toimi + mise + ks
(iii) yes work time työ + aja + sta töö + aja + st
(i) no On + y + sz + kie + wicz Onys + zk + ie + wi + cz O + nysz + ki + ewicz
(ii) no get + ting saami + seksi saami + seks

work + ing toimi + mise + ksi toimi + miseks
(iii) no work time työ + aja + sta tööajast

Table 1: Example consistent and inconsistent segmentations.

resentations and meanings, whether they oc-
cur in cognate words or elsewhere. We hypoth-
esize that segmentation consistency between
target languages enables learning of better gen-
eralizing subword representations. This consis-
tency allows contexts seen in the high-resource
corpus to fill in for those missing from the low-
resource corpus. This should lead to improved
translation results, especially for the lower re-
sourced target language.

Naïve joint training of a segmentation
model, e.g. by training Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015) on the con-
catenation of the training corpora in differ-
ent languages, can only address consistency
when the cognates are identical (type i), or
with some luck if the differences occur in the
ends of the words. If a single letter changes in
the middle of a cognate, consistent subwords
that span over the location of the change are
found only by chance. In order to encourage
stronger consistency, we propose a segmenta-
tion model that uses automatically extracted
cognates and fuzzy matching between cognate
morphs.

In this work we also contribute two new
features to the OpenNMT translation system:
Ensemble decoding, and fine-tuning a pre-
trained model using a compatible data set.1

1.1 Related work
Improving segmentation through multilingual
learning has been studied before. Snyder
and Barzilay (2008) propose an unsupervised,
Bayesian method, which only uses parallel
phrases as training data. Wicentowski (2004)
present a supervised method, which requires
lemmatization. The method of Naradowsky

1Our changes are awaiting inclusion in OpenNMT.
In the mean time, they are available from https://
github.com/Waino/OpenNMT-py/tree/ensemble

and Toutanova (2011) is also unsupervised,
utilizing a hidden semi-Markov model, but it
requires rich features on the input data.

The subtask of cognate extraction has seen
much research effort (Mitkov et al., 2007;
Bloodgood and Strauss, 2017; Ciobanu and
Dinu, 2014). Most methods are supervised,
and/or require rich features.

There is also work on cognate identification
from historical linguistics perspective (Rama,
2016; Kondrak, 2009), where the aim is to clas-
sify which cognate candidates truly share an
etymological origin.

We propose a language-agnostic, unsuper-
vised method, which doesn’t require annota-
tions, lemmatizers, analyzers or parsers. Our
method can exploit both monolingual and par-
allel data, and can use cognates of any part-of-
speech.

2 Cognate Morfessor

We introduce a new variant of Morfessor for
cross-lingual segmentation.2 It is trained us-
ing a bilingual corpus, so that both target lan-
guages are trained simultaneously.

We allow each language to have its own sub-
word lexicon. In essence, as a Morfessor model
consists of a lexicon and the corpus encoded
with that lexicon, we now have two separate
complete Morfessor sub-models. The two mod-
els are linked through the training algorithm.
We want the segmentation of non-cognates to
tend towards the normal Morfessor Baseline
segmentation, but place some additional con-
straints on how the cognates are segmented.

In our first experiments, we only restricted
the number of subwords on both sides of the
cognate pair to be equal. This criterion was

2Available from https://github.com/Waino/
morfessor-cognates
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too loose, and we saw many of the longer cog-
nates segmented with both 1-to-N and N-to-1
morpheme correspondences. For example

ty + ö + aja + sta
töö + aja + s + t

To further encourage consistency, we in-
cluded a third component to the model, which
encodes the letter edits transforming the sub-
words of one cognate into the other.

Cognate Morfessor is inspired by Allomor-
fessor (Kohonen et al., 2009; Virpioja et al.,
2010), which is a variant of Morfessor that in-
cludes modeling of allomorphic variation. Si-
multaneously to learning the segmentations,
Allomorfessor learns a lexicon of transforma-
tions to convert a morph into one of its allo-
morphs. Allomorfessor is trained on monolin-
gual data.

We implement the new version as an exten-
sion of Morfessor Baseline 2.0 (Virpioja et al.,
2013).

2.1 Model
The Morfessor Baseline cost function (Creutz
and Lagus, 2002)

L(θ, D) = − log p(θ) − log p(D |θ) (1)

is extended to

L(θ, D) = − log p(θ1) − log p(θ2) − log p(θE)

− log p(D1 | θ1) − log p(D2 | θ2)

− log p(DE | θE) (2)

dividing both lexicon and corpus coding costs
into three parts: one for each language (θ1, D1

and θ2, D2) and one for the edits transforming
the cognates from one language to the other
(θE ,DE).

The coding is redundant, as one language
and the edits would be enough to reconstruct
the second language. In the interest of symme-
try between target languages, we ignore this
redundancy.

The intuition is that the changes in spelling
between the cognates in a particular language
pair is regular. Coding the differences in a
way that reduces the cost of making a simi-
lar change in another word guides the model
towards learning these patterns from the data.

The coding of the edits is based on the Lev-
enshtein (1966) algorithm. Let (wa, wb) be

a cognate pair and its current segmentation(
(ma

1, . . . , m
a
n), (mb

1, . . .m
b
n)

)
. The morphs are

paired up sequentially. Note that the restric-
tions on the search algorithm guarantee that
both segmentations contain the same number
of morphs, n. For a morph pair (ma

i ,m
b
i), the

Levenshtein-minimal set of edits is calculated.
Edits that are immediately adjacent to each
other are merged. In order to improve the
modeling of sound length change, we extend
the edit in both languages to include the neigh-
boring unchanged character, if one half of the
edit is the empty string ϵ, and the other con-
tains another instance of character represent-
ing the sound being lengthened or shortened.
This extension encodes a sound lengthening as
e.g. ’a→aa’ instead of ’ϵ →a’. As the edits are
cheaper to reuse once added to the edit lexicon,
avoiding edits with ϵ on either side is beneficial
to reduce spurious use. Finally, position in-
formation is discarded from the edits, leaving
only the substrings, separated by a boundary
symbol.

As an example, the edits found between
yhteenkuuluvuuspolitiikkaa and ühtekuuluvus-
poliitika are ’y→ü’, ’een→e’, ’uu→u’, ’ti→it’,
and ’kka→k’.

The semi-supervised weighting scheme of
Kohonen et al. (2010) can be applied to Cog-
nate Morfessor. A new weighting parame-
ter edit_cost_weight is added, and multiplica-
tively applied to both the lexicon and corpus
costs of the edits.

The training algorithm is an iterative greedy
local search very similar to the Morfessor Base-
line algorithm. The algorithm finds an ap-
proximately minimizing solution to Eq 2. The
recursive splitting algorithm from Morfessor
Baseline is slightly modified. If a non-cognate
is being reanalyzed, the normal algorithm is
followed. Cognates are reanalyzed together.
Recursive splitting is applied, with the restric-
tion that if a morph in one language is split,
then the corresponding cognate morph in the
other language must be split as well. The
Cartesian product of all combinations of valid
split points for both languages is tried, and
the pair of splits minimizing the cost function
is selected, unless not splitting results in even
lower cost.
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3 Extracting cognates from parallel
data

Finnish–Estonian cognates were automatically
extracted from the shared task training data.
As we needed a Finnish–Estonian parallel
data set, we generated one by triangula-
tion from the English–Finnish and English–
Estonian parallel data. This resulted in a set
of 679 252 sentence pairs (ca 12 million tokens
per language).

FastAlign (Dyer et al., 2013) was used for
word alignment in both directions, after which
the alignments were symmetrized using the
grow-diag-final-and heuristic. All aligned word
pairs were extracted based on the symmetrized
alignment. Words containing punctuation,
and pairs aligned to each other fewer than 2
times were removed. The list of word pairs
was filtered based on Levenshtein distance. If
either of the words consisted of 4 or fewer char-
acters, an exact match was required. Oth-
erwise, a Levenshtein distance up to a third
of the mean of the lengths, rounding up, was
allowed. This procedure resulted in a list of
40 472 cognate pairs. The list contains words
participating in multiple cognate pairs. Cog-
nate Morfessor is only able to link a word to
a single cognate. We filtered the list, keeping
only the pairing to the most frequent cognate,
which reduces the list to 22 226 pairs.

The word alignment provides a check for se-
mantic similarity in the form of translational
equivalence. Even though the word alignment
may produce some errors, accidentally seg-
menting false friends consistently should not
be problematic.

4 Data
After filtering, we have 9 million multilin-
gual sentence pairs in total. 6.3M of this
is English–Finnish, of which 2.2M is paral-
lel data, and 4.1M is synthetic backtranslated
data. Of the 2.8M total English–Estonian, 1M
is parallel and 1.8M backtranslated. The sen-
tences backtranslated from Finnish were from
the news.2016.fi corpus, translated with a PB-
SMT model, trained with WMT16 constrained
settings. The backtranslation from Estonian
was freshly made with a BPE-based system
similar to our baseline system, trained on the
WMT18 data. The sentences were selected

from the news.20{14-17}.et corpora, using a
language model filtering technique.

4.1 Preprocessing
The preprocessing pipeline consisted of filter-
ing by length3 and ratio of lengths4, fixing
encoding problems, normalizing punctuation,
removing of rare characters5, deduplication,
tokenizing, truecasing, rule-based filtering of
noise, normalization of contractions, and fil-
tering of noise using a language model.

The language model based noise filtering
was performed by training a character-based
deep LSTM language model on the in-domain
monolingual data, using it to score each target
sentence in the parallel data, and removal of
sentences with perplexity per character above
a manually picked threshold. A lenient thresh-
old6 was selected in order to filter noise, rather
than for aiming for domain adaptation. The
same process was applied to filter the Estonian
news data for backtranslation.

Our cognate segmentation resulted in a tar-
get vocabulary of 42 386 subwords for Esto-
nian and 46 930 subwords for Finnish, result-
ing in 64 396 subwords when combined.

For segmentation of the English source, a
separate Morfessor Baseline model was trained.
To ensure consistency between source and tar-
get segmentations, we used the segmentation
of the Cognate Morfessor model for any En-
glish words that were also present in the target
side corpora. The source vocabulary consisted
of 61 644 subwords.

As a baseline segmentation, we train a
shared 100k subword vocabulary using BPE.
To produce a balanced multilingual segmenta-
tion, the following procedure was used: First,
word counts were calculated individually for
English and each of the target languages
Finnish and Estonian. The counts were nor-
malized to equalize the sum of the counts for
each language. This avoided imbalance in the
amount of data skewing the segmentation in
favor of some language. BPE was trained
on the balanced counts. Segmentation bound-
aries around hyphens were forced, overriding
the BPE.

31–100 tokens, 3–600 chars, ≤ 50 chars/token.
4Requiring ratio 0.5–2.0, if either side > 10 chars.
5< 10 occurrences
696% of the data was retained.
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ϵ → n 27919 g → k 3000 il → ϵ 2077
ϵ → a 17082 ü → y 2979 m → mm 2016
ϵ → i 15725 oo → o 2790 s → n 2005
d → t 12599 t → a 2674 ee → e 1950
l → ll 5236 ϵ → k 2583 i → ϵ 1889
ϵ → ä 4437 aa → a 2536 ϵ → e 1803
s → ssa 3907 õ → o 2493 u → o 1724
t → tt 3863 a → ä 2479 ϵ → d 1496
o → u 3768 s → ϵ 2173 il → t 1486
e → i 3182 t → ϵ 2158 d → ϵ 1433

Table 2: 30 most frequent edits learned by the
model. The direction is Estonian→Finnish. The
numbers indicate how many times the edit was ap-
plied in the morph lexicon. ϵ indicates the empty
string.

Multilingual translation with target-
language tag was done following (Johnson
et al., 2016). A pseudo-word, e.g. <to_et>
to mark Estonian as the target language,
was prefixed to each paired English source
sentence.

5 NMT system
We use the OpenNMT-py (Klein et al., 2017)
implementation of the Transformer.

5.1 Transformer
The Transformer architecture (Vaswani et al.,
2017) relies fully on attention mechanisms,
without need for recurrence or convolution. A
Transformer is a deep stack of layers, consist-
ing of two types of sub-layer: multi-head (MH)
attention (Att) sub-layers and feed-forward
(FF) sub-layers:

Att(Q, K, V ) = softmax(
QKT

√
dk

)V

ai = Att(QWQ
i ,KWK

i , V W V
i )

MH(Q, K, V ) = [a1; . . . ; ah]WO

FF(x) = max(0, xW1 + b1)W2 + b2

(3)

where Q is the input query, K is the key, and
V the attended values. Each sub-layer is indi-
vidually wrapped in a residual connection and
layer normalization.

When used in translation, Transformer lay-
ers are stacked into an encoder-decoder struc-
ture. In the encoder, the layer consists of a
self-attention sub-layer followed by a FF sub-
layer. In self-attention, the output of the pre-
vious layer is used as queries, keys and values

chrF-1.0 BLEU%
en-et dev dev
BPE 56.52 17.93
monolingual 53.44 15.82
Cognate Morfessor 57.05 18.40

+finetuned 57.23 18.45
+ensemble-of-5 57.75 19.09
+ensemble-of-3 57.64 18.96

+linked embeddings 56.20 17.48
−LM filtering 52.94 14.65
6+6 layers 57.35 18.84

Table 3: Development set results for English–
Estonian. character-F and BLEU scores in per-
centages. +/− stands for adding/removing a com-
ponent. Multiple modifications are indicated by
increasing the indentation.

Q = K = V . In the decoder, a third context
attention sub-layer is inserted between the self-
attention and the FF. In context attention, Q
is again the output of the previous layer, but
K = V is the output of the encoder stack. The
decoder self-attention is also masked to pre-
vent access to future information. Sinusoidal
position encoding makes word order informa-
tion available.

5.2 Training
Based on some preliminary results, we de-
cided to reduce the number of layers to 4
in both encoder and decoder; later we found
that the decision was based on too short
training time. Other parameters were chosen
following the OpenNMT FAQ (Rush, 2018):
512-dimensional word embeddings and hidden
states, dropout 0.1, batch size 4096 tokens, la-
bel smoothing 0.1, Adam with initial learning
rate 2 and β2 0.998.

Fine-tuning for each target language was
performed by continuing training of a multi-
lingual model. Only the appropriate monolin-
gual subset of the training data was used in
this phase. The data was still prefixed for tar-
get language as during multilingual training.
No vocabulary pruning was performed.

In our ensemble decoding procedure, the
predictions of 3–8 models are combined by av-
eraging after the softmax layer. Best results
are achieved when the models have been inde-
pendently trained. However, we also try com-
binations where a second copy of a model is
further trained with a different configuration
(monolingual finetuning).
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chrF-1.0 BLEU%
en-fi nt2015 nt2016 nt2017 nt2017AB nt2015 nt2016 nt2017 nt2017AB
BPE 58.59 59.76 62.00 63.06 21.09 21.04 23.49 26.55
monolingual 57.94 59.11 61.33 62.41 20.87 20.70 23.11 26.12
Cognate Morfessor 58.18 59.81 62.15 63.24 20.73 21.18 23.37 26.26

+finetuned 58.48 59.89 62.17 63.28 21.08 21.41 23.45 26.52
+ensemble-of-8 59.07 60.69 62.94 64.07 21.50 22.34 24.59 27.55

−LM filtering 58.19 59.39 61.78 62.82 20.62 20.77 23.38 26.36
+linked embeddings 57.79 59.45 61.52 62.58 19.95 20.84 22.70 25.69
6+6 layers 58.68 60.26 62.37 63.52 21.05 21.81 23.93 27.08

Table 4: Results for English–Finnish. character-F and BLEU scores in percentages. +/− stands for
adding/removing a component. Newstest is abbreviated nt. Both references are used in nt2017AB.

We experimented with partially linking the
embeddings of cognate morphs. In this ex-
periment, we used morph embeddings concate-
nated from two parts: a part consisting of nor-
mal embedding of the morph, and a part that
was shared between both halves of the cognate
morph pair. Non-cognate morphs used an un-
linked embedding also for the second part. Af-
ter concatenation, the linked embeddings have
the same size as the baseline embeddings.

We evaluate the systems with cased BLEU
using the mteval-v13a.pl script, and charac-
terF (Popovic, 2015) with β set to 1.0. The
latter was used for tuning.

6 Results

Based on preliminary experiments, the Morfes-
sor corpus cost weight α was set to 0.01, and
the edit cost weight was set to 10. The most
frequent edits are shown in Table 2.

Table 3 shows the development set results
for Estonian. Table 4 shows results for previ-
ous year’s test sets for Finnish.

The tables show our main system and the
two baselines: a multilingual model using joint
BPE segmentation, and a monolingual model
using Morfessor Baseline.

Cognate Morfessor outperforms the compa-
rable BPE system according to both measures
for Estonian, and according to chrF-1.0 for
Finnish. For Finnish, results measured with
BLEU vary between test sets. The cross-
lingual segmentation is particularly beneficial
for Estonian.

In the monolingual experiment, the cross-
lingual segmentations are replaced with mono-
lingual Morfessor Baseline segmentation, and
only the data sets of one language pair at a

time is used. These results show that even
the higher resourced language, Finnish, bene-
fits from multilingual training.

The indented rows show variant configura-
tions of our main system. Monolingual fine-
tuning consistently improves results for both
languages. For Estonian, we have two ensem-
ble configurations: one combining 3 monolin-
gually finetuned independent runs, and one
combining 5 monolingually finetuned save-
points from 4 independent runs. Selection
of savepoints for the ensemble was based on
development set chrF-1. In the ensemble-of-
5, one training run contributed two models:
starting finetuning from epochs 14 and 21 of
the multi-lingual training. The submitted sys-
tem is the ensemble-of-3, as the ensemble-of-
5 finished training after the deadline. For
Finnish, we use an ensemble of 4 finetuned and
4 non-finetuned savepoints from 4 independent
runs.

To see if further cross-lingual learning could
be achieved, we performed an unsuccessful
experiment with linked embeddings. It ap-
pears that explicit linking does not improve
the morph representations over what the trans-
lation model is already capable of learning.

After the deadline, we trained a single model
with 6 layers in both the encoder and decoder.
This configuration consistently improves re-
sults compared to the submitted system.

All the variant configurations (ensemble,
finetuning, LM filtering, linked embeddings,
number of layers) used with Cognate Morfes-
sor are compatible with each other. We did
not not explore the combinations in this work,
except for combining finetuning with ensem-
bleing: all of the models in the Estonian en-
sembles, and 4 of the models in the Finnish
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ensemble are finetuned. All the variant config-
urations except for linked embeddings could
also be used with BPE.

7 Conclusions and future work
The translation system trained using the Cog-
nate Morfessor segmentation outperforms the
baselines for both languages. The benefit is
larger for Estonian, the language with less
data in this experiment.

One downside is that, due to the model
structure, Cognate Morfessor is currently not
applicable to more than two target languages.

Cognate Morfessor itself learns to model the
frequent edits between cognate pairs. How-
ever, in the preprocessing cognate extraction
step of this work, we used unweighted Leven-
shtein distance, which does not distinguish ed-
its by frequency. In future work, weighted or
graphonological Levenshtein distance could be
applied (Babych, 2016).
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Abstract There are several approaches for improving neural machine translation for low-resource languages:
Monolingual data can be exploited via pretraining or data augmentation; Parallel corpora on related language
pairs can be used via parameter sharing or transfer learning in multilingual models; Subword segmentation and
regularization techniques can be applied to ensure high coverage of the vocabulary. We review these approaches
in the context of an asymmetric-resource one-to-many translation task, in which the pair of target languages are
related, with one being a very low-resource and the other a higher-resource language. We test various methods
on three artificially restricted translation tasks—English to Estonian (low-resource) and Finnish (high-resource),
English to Slovak and Czech, English to Danish and Swedish—and one real-world task, Norwegian to North
Sámi and Finnish. The experiments show positive effects especially for scheduled multi-task learning, denoising
autoencoder, and subword sampling.

Keywords Low-resource languages · Multilingual machine translation · Transfer learning · Multi-task learning ·
Denoising sequence autoencoder · Subword segmentation

1 Introduction

Machine translation (MT) has become an important application for natural language processing (NLP), enabling
increased access to the wealth of digital information collected on-line, and new business opportunities in
multilingual markets. MT has made rapid advances following the adoption of deep neural networks in the last
decade, with variants of the sequence-to-sequence (seq2seq, Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014) architecture currently holding the state of the art in neural machine translation (NMT). However, the
recent success has not applied to all languages equally. Current state-of-the-art methods require very large
amounts of data: Seq2seq methods have been shown to work well in large data scenarios, but are less effective
for low-resource languages. The rapid digitalization of society has increased the availability of suitable parallel
training corpora, but the growth has not distributed evenly across languages.

The amount of data needed to reach acceptable quality can also vary based on language characteristics.
Rich, productive morphology leads to a combinatorial explosion in the number of word forms. Therefore, a
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Fig. 1: Overview of techniques for improving low-resource multilingual NMT. Techniques highlighted with blue
are used in this work.

larger corpus is required to reach the same coverage of word forms. Often the two challenges coincide, with
morphologically complex languages that are also relatively low on resources.

Three distinct types of resources may be available for MT training: parallel data, monolingual data, and
data in related languages. In the low-resource translation setting, it is primarily the parallel data that is scarce.
Monolingual data is easier to acquire and typically more abundant. In addition, there may be related languages
with much more abundant resources.

In this work, we consider machine translation into a low-resource morphologically rich language by means of
transfer learning from a related high-resource target language, by exploiting available monolingual corpora ,
and by exploring the methods and parameters for vocabulary construction . Figure 1 illustrates an overview
of the known techniques for low-resource multilingual NMT; most of them are considered in our experiments.

Our task is a one-to-many setting in multilingual neural machine translation (MNMT), as opposed to
many-to-one and many-to-many settings (Luong, 2016). As we consider target languages that have different
amounts of training resources available, we call this an asymmetric-resource one-to-many translation task.
It has three major challenges:

Sparsity. Translating into a low-resource is challenging, especially in the case of a morphologically rich
language, due to a combination of small data and a large target vocabulary. The resulting data sparsity
makes it difficult to estimate statistics for all but the most frequent items. Even though continuous-space
representations allow neural methods to generalize well, they learn poorly from low-count events. Methods like
subword segmentation (Virpioja et al., 2007; Sennrich et al., 2015) can reshape the frequency distribution of the
basic units to reduce sparsity, and yield a more balanced class distribution in the generator. Suitable subwords
are also beneficial for exploiting transfer from related high-resource languages (Grönroos et al., 2018), and from
monolingual data.

Data imbalance. In multilingual machine translation, it is very common to have an imbalance between the
languages in the training data. The data can vary in quantity, quality and appropriateness of domain. Typically
all three challenges affect the low-resource languages: when data is hard to come by, even noisy and out-of-domain
data must be used. The data imbalance is typically addressed by oversampling the low-resource data. One way
to choose the oversampling weights is using a temperature-based approach to interpolate between sampling from
the true distribution and sampling uniformly (Arivazhagan et al., 2019). An alternative to oversampling the
data is to adapt the gradient scale or learning rate individually for each task (Chen et al., 2018).

Task imbalance. An NMT system is a conditional language model. The training signal for the language
model is much stronger than for conditioning on the source. The conditioning requires training the natural
language understanding encoder and the cross-lingually aligning attention mechanism, which are both difficult
tasks. High fluency is a known property of NMT (Toral and Sánchez-Cartagena, 2017; Koponen et al., 2019).
When a vanilla NMT system is trained in a low-resource setting, the learning signal may be sufficient to train
the language model, but insufficient for the conditioning (Östling and Tiedemann, 2017). In this case, the
MT system degenerates into a fancy language model, with the output resembling generated nonsense, with
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Table 1: Example from NMT system overfitted to the language modeling task.

Estonian Source Laktoosi puhul see nii ju ongi!
English Overfit translation I’ve been thinking about it.
English Reference That’s the case with lactose!

possibly high fluency but little relation to the source text. As an example, Table 1 shows an output from an
Estonian–English translation system trained from parallel data of only 18k sentence pairs. Mueller et al. (2020)
observe this language model overfitting phenomenon in a massively multilingual but low-resource setting using
Bible translations as the corpus.

Given these challenges, our research questions include:

1. On cross-lingual transfer, is it better to use sequential (pretraining followed by fine-tuning) or parallel (all
tasks at the same time) transfer, or something in between?

2. On exploiting monolingual data:
(a) For which languages should one add monolingual auxiliary tasks? Is it useful to have a target-language

autoencoder in addition to the back-translation strategy, where synthetic training data is generated by a
target-to-source translation model?

(b) What kind of noise models are most useful for the denoising sequence autoencoder task?
3. On vocabulary construction:

(a) What is a suitable granularity of subword segmentation for the low-resource task?
(b) Does it matter what data-driven segmentation method is used?
(c) Does subword regularization (sampling different segmentations for the same word forms) help?

4. On available data and languages:
(a) When data is very scarce, is it better to train a small model on the low-resource data, or a larger model

using also the auxiliary data?
(b) Is cross-lingual transfer more useful than transfer from monolingual tasks?
(c) How does the amount of the data available for the low-resource language affect the translation quality?
(d) How important is language relatedness for the cross-lingual transfer?

As methodological contributions for NMT, we formulate a scheduled multi-task learning technique for
asymmetric-resource cross-lingual transfer, propose our recently introduced Morfessor EM+Prune method
(Grönroos et al., 2020) for learning the subword vocabulary, and introduce a taboo sampling task for improving
the modeling of segmentation ambiguity. We include experiments using three diverse language families, with
Estonian, Slovak and Danish as simulated low-resource target languages. We also contribute a Norwegian bokm̊al
to North Sámi translation system, the first NMT system for this target language, to the best of our knowledge.

In the next three sections, we will discuss the different techniques for cross-lingual transfer, exploiting
monolingual data, and vocabulary construction. Then we will describe our experimental setup and discuss the
results for four different groups of languages, and finally summarize our findings.

2 Cross-lingual transfer

Multilingual training allows exploiting cross-lingual transfer between related languages by training a single
model to translate between multiple language pairs. This is a form of multi-task learning (Caruana, 1998),
in which each language pair in the training data can be seen as a separate learning task (Luong et al., 2015).
The low-resource language is the main task, and at least one related high-resource language is used as an
auxiliary task. The cardinality of the multilingual translation has an effect: cross-lingual transfer is easier in the
many-to-one setting compared to one-to-many (Arivazhagan et al., 2019). For a general survey on multilingual
translation, see (Dabre et al., 2020).

2.1 Sequential and parallel transfer

In transfer learning, knowledge gained while learning one task is transferred to another. The tasks can either be
trained sequentially or in parallel. Transfer is essential in asymmetric-resource settings, in which the amount
of training examples for the target task very small, requiring the learner to rapidly generalize. Sequential
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Fig. 2: Task mixing strategies for transfer learning.

transfer is a form of adaptation. In sequential transfer learning, the pretraining on a high-resource parent
task is used to initialize and constrain the fine-tuning training on the low-resource child task. Zoph et al. (2016)
apply sequential transfer learning to low-resource neural machine translation. Sequential transfer carries the risk
of catastrophic forgetting (McCloskey and Cohen, 1989; Goodfellow et al., 2014), in which the knowledge gained
from the first task fades away completely. Some parameters can be frozen between the two training phases. This
reduces the number of parameters trained from the small data, which may delay overfitting.

When training tasks in parallel, called multi-task learning , catastrophic forgetting does not occur. If the
amount of data for different tasks is highly asymmetrical, careful tuning of the task mixture weights is critical to
avoid overfitting on the small task. Sequential transfer does not require the same tuning, as convergence can be
determined for each task separately.

It is also possible to combine sequential and parallel transfer. Figure 2 shows some possible ways of achieving
this by mixing the tasks. One strategy—mixed fine-tuning—involves first pretraining only on the large task,
and then fine-tuning with a mixture of tasks. Chu et al. (2017) apply this strategy to domain adaptation. Kocmi
(2019) try the inverse setting—mixed pretraining—pretraining on a mixture of tasks and fine-tuning only on
the child task.

Kiperwasser and Ballesteros (2018) propose generalizing these strategies into scheduled multi-task learn-
ing , in which training examples from different tasks are selected according to a mixing distribution. The mixing
distribution changes during training according to the task-mix schedule. They experiment with three schedules:
constant, exponential and sigmoidal. We propose a new partwise constant task-mix schedule suitable for an
asymmetric-resource setting with multiple auxiliary tasks. The task-mix schedule can have an arbitrary number
of steps, any of which can be mixing multiple tasks. All the other strategies can be recovered by using particular
schedules with scheduled multi-task learning.

2.2 Parameter sharing

In neural networks, multilingual models are implemented through parameter sharing. It is possible to share all
neural network parameters, or select a subset for sharing allowing the remaining ones to be language-specific.
Parameter sharing can be either hard or soft. In hard parameter sharing the exact same parameter matrix is used
for several languages. In soft parameter sharing, each language has its own parameter matrix, but a dependence
is constructed between the corresponding parameters for different languages.

The target language token Johnson et al. (2017) and language embedding (Conneau and Lample,
2019) approaches use hard sharing of all parameters. In the former, the model architecture is the same as in
a language-pair-specific model. The target language is indicated by a preprocessing step that prepends to the
input a special target language token, e.g. 〈to fi〉 to indicate that the target language is Finnish. The approach
can be scaled to more languages by increasing the capacity of the model, primarily by increasing the depth in
layers (Arivazhagan et al., 2019). The latter can be described as a factored representation, with the language
embedding factor marking the language of each word on the target side.

In contrast to full parameter sharing, it is also possible to divide the model parameters into shared and
language-specific subnetworks, e.g. sharing all parameters of the encoder, while letting each target language
have its own decoder. Parameter sharing can even be controlled on a more fine-grained level (Sachan and Neubig,
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2018). Shared attention (Firat et al., 2016) uses language-specific encoders and decoders with a shared attention,
while language-specific attention (Blackwood et al., 2018) does the opposite by sharing only the feedforward
sublayers of the decoder, while using language-specific parameters for the attention mechanisms.

The contextual parameter generator (Platanios et al., 2018) meta-learns a soft dependency between
parameters for different tasks. It does this by using one neural network (the parameter generator) to generate
from some contextual variables the weights of another network (the model). Gu et al. (2018) apply meta-learning
to find initializations that can very rapidly adapt to a new low-resource source language.

3 Exploiting monolingual data

While parallel data is the primary type of data used for training MT models, methods for effectively exploiting
the more abundant monolingual data can greatly increase the number of available examples to learn from. Use of
monolingual data can be viewed as semi-supervised learning: both labeled (parallel) and unlabeled (monolingual)
data are used. There are two main approaches to exploiting monolingual data in MT: transfer learning and
dataset augmentation.

3.1 Transfer learning: monolingual pretraining

In monolingual pretraining, some of the parameters of the final translation model are pretrained on a task using
monolingual data, possibly using a different loss than the one used during NMT training. There are several
ways to use pretraining: Pretrain word (or subword) embeddings for the encoder, decoder, or both. Pretrain a
separate language model for the target language, and combine it with the predictions of the translation model.
Or, finally, pretrain an entire subnetwork—encoder or decoder—of the translation model.

3.1.1 Embeddings

Source and target embeddings can be pretrained on monolingual data from the source and target languages,
respectively (Di Gangi and Federico, 2017). Alternatively, joint cross-lingual embeddings can be trained on
both (Artetxe et al., 2018). As the embeddings are trained for e.g. a generic contextual prediction task, this
is a form of transfer learning. The pretrained embeddings can either be frozen or fine-tuned, by respectively
omitting or including them as trainable parameters during NMT training. Thompson et al. (2018) investigate the
effects of freezing various subnetwork parameters—including embeddings—on domain adaptation. In addition to
using monolingual data, pretrained embeddings can contribute to cross-lingual transfer in the case of a shared
multilingual embedding space (Artetxe et al., 2018). The shared embedding spaces are typically on a word level.

3.1.2 Language model fusion

The predictions of a strong language model can be combined with the predictions of the translation model, either
using a separate rescoring step, or by combining the predictions during decoding, using model fusion . This
approach is used in statistical machine translation, where one or more target language models are combined with
a statistical translation model. The approach can also be applied in neural machine translation, through shallow
fusion, deep fusion (Gulcehre et al., 2015), cold fusion (Sriram et al., 2017), or PostNorm (Stahlberg et al., 2018).
As a neural machine translation system is already a conditional language model, it may be preferable to find a
way to train the parameters of the NMT system using the monolingual data.

3.1.3 Subnetwork pretraining

In subnetwork pretraining, the intent is to pretrain entire network components—the encoder or the decoder—with
knowledge about the structure of language. One way to achieve this using unlabeled data is to apply a language
modeling loss during pretraining. The loss function can either be the traditional next token prediction, or a
masked language model. Alternatively an autoencoder loss can be used.

Domhan and Hieber (2017) modify the NMT architecture by adding an auxiliary language model loss in the
internal layers of the decoder, before attending to the source. This loss allows the first layers of the decoder to be
trained on monolingual data. They find no benefit of adding the language model loss unless additional monolingual
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data is used. Adding monolingual data gives a benefit, but does not outperform back-translation. Ramachandran
et al. (2017) pretrain the encoder and decoder with source and target language modeling tasks, respectively. To
prevent overfitting, they use task-mix fine-tuning: the translation and language modeling objectives are trained
jointly (with equally weighted tasks). Skorokhodov et al. (2018) use both pretraining (on both source and target
side) and gated shallow fusion (on the target side) to transfer knowledge from pretrained language models. Some
of the experiments are performed on low-resource data going down to 10k sentence pairs.

3.2 Dataset augmentation

The easiest way to improve generalization is to train on more data. As natural training data is limited, a practical
way to acquire more is to generate additional synthetic data for augmentation. The main benefit of dataset
augmentation is as regularization to prevent overfitting to non-robust properties of small data.

Simple ways to generate synthetic data include using a single dummy token on the source side (Sennrich
et al., 2016), and copying the target to source (Currey et al., 2017). The latter can be interpreted as a target-side
autoencoder task without noise. The largest factor in determining the effectiveness of using synthetic data is how
much the synthetic data deviates from the true data distribution. To avoid confusing the encoder with synthetic
data from a different distribution than the natural data, it may be beneficial to use a special tag to identify the
synthetic data (Caswell et al., 2019).

3.2.1 Back-translation

Synthetic data can be self-generated by the model being trained, or a related model. In machine translation,
the best known example of synthetic data is back-translation (BT) (Sennrich et al., 2016). The process of
back-translation begins with the training of a preliminary MT model in the reverse direction, from target to source.
The target language monolingual data is translated using this model, producing a synthetic, pseudo-parallel data
set with the potentially noisy MT output on the source side. Because the quality of the translation system used
for the back-translation affects the noisiness of the synthetic data, the procedure can be improved by iterating
with alternating translation direction (Lample et al., 2018b). Edunov et al. (2018) propose adding noise to the
back-translation output. The benefit of noisy back-translation is further analyzed by Graça et al. (2019), who
recommend turning off label smoothing in the reverse model when combined with sampling decoding. As a
related strategy, Karakanta et al. (2018) convert parallel data from a high-resource language pair into synthetic
data for a related low-resource pair using transliteration. Zhang and Zong (2016) exploit monolingual data in
two ways: through self-learning by “forward-translating” the monolingual source data to create synthetic parallel
data, and by applying a reordering auxiliary task: the input is the natural source text, while the output is the
source text reordered using rules to match the target word order.

3.2.2 Subword regularization

Subword regularization is a technique proposed by Kudo (2018) for applying a probabilistic subword segmentation
model to generate more variability in the input text. Each time a word token is used during training, a new
segmentation is sampled for it. It can be seen as treating the subword segmentation as a latent variable. While
marginalizing over the latent variable exactly is intractable, the subword regularization procedure approximates
it through sampling.

3.2.3 Denoising sequence autoencoder

Back-translation is a slow method due to the additional training of the reverse translation model. A computa-
tionally cheaper way to turn monolingual data into synthetic parallel data is to use a denoising autoencoder
as an auxiliary task. Target language text, corrupted by a noise model, is fed in as a pseudo-source. Different
noise models can be used, e.g. applying reordering, deletions, or substitutions to the input tokens. The desired
reconstruction output is the original noise-free target language text.

An autoencoder (Bourlard and Kamp, 1988) is a neural network that is trained to copy its input to its output.
It applies an encoder mapping from input to a hidden representation, i.e. code h = f(x), and decoder mapping
from code to a reconstruction of the input x̂ = g(h). To force the autoencoder to extract patterns in the data
instead of finding the trivial identity function x̂ = 1(1(x)), the capacity of the code must be restricted somehow.
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In the undercomplete autoencoder, the restriction is in the form of a bottleneck layer with small dimension. For
example, in the original sequence autoencoder (Dai and Le, 2015), the entire sequence is compressed into a single
vector.

In a modern sequence-to-sequence architecture, the attention mechanism ensures a very large bandwidth
between encoder and decoder. When used as an autoencoder, the network is thus highly overcomplete. In this
case, the capacity of the code has to be controlled by regularization. Robustness to noise is used as the regularizer
in the denoising autoencoder (Vincent et al., 2008). Instead of feeding in the clean example x, a corrupted
copy of the input is sampled from a noise model C(x̃ |x). The denoising autoencoder must then learn to reverse
the corruption to reconstruct the clean example. The use of noise as regularization is a successful technique
used e.g. in Dropout (Srivastava et al., 2014), label smoothing (Szegedy et al., 2016), and SwitchOut (Wang
et al., 2018). Also multi-task learning acts as regularization by claiming some of the capacity of the model.
Belinkov and Bisk (2017) apply both natural and synthetic noises for NMT evaluation, finding that standard
character-based NMT models are not robust to these types of noise.

There are multiple ways of adding the autoencoder loss to the NMT training. The simplest one treats the
autoencoder task as if it was another language pair for multilingual training, and involves no changes to the
architecture. When using this type of autoencoder task on target language sentences, the task cardinality changes
into a many-to-one problem: the model must simultaneously learn a mapping from source to target and from
corrupted target to clean target. In both tasks the target language is the same. As the decoder is a conditional
language model, this task strengthens the modeling of the target language. When using source language sentences,
the model must simultaneously learn a one-to-many mapping from source to target and from corrupted source
to clean source. Thus the decoder must learn to output both languages. The task may strengthen the encoder,
by increasing its robustness to noise, and by preventing the encoding from becoming too specific to the target
language. Luong et al. (2015) and Luong (2016) experiment with various auxiliary tasks, including this type of
autoencoder setup. They see a benefit of using the autoencoder task, as long as it has a low enough weight in
the task mix. This setup is used also in our experiments.

There are also more complex NMT autoencoder setups. In dual learning , the autoencoder is built from
source-to-target and target-to-source translation models. He et al. (2016) combine source-to-target and target-to-
source translations in a closed loop which can be trained jointly, using two additional language modeling tasks
(for source and target respectively), and reinforcement learning with policy gradient. Cheng et al. (2016) use a
dual learning setup to exploit monolingual corpora in both source and target languages. Their loss consists of
four parts: translation likelihoods in both directions, source autoencoder, and target autoencoder. Tu et al. (2017)
simplify the dual learning setup into an encoder–decoder–reconstructor network. The reconstructor attends
to the final hidden states of the decoder and thus does not need a separate encoder. Their aim is to improve
adequacy by penalizing undertranslation: the reconstructor is not able to generate any parts of the sentence
omitted by the decoder.

3.2.4 Noise models for text

To apply a denoising autoencoder to text, a suitable noise model for text is needed. In domains such as image and
speech, there are very intuitive noises, including rotating, scaling, and mirroring for images; and reverberation,
time-scale stretching, and pitch shifting for speech. As text is a sequence of discrete symbols, where even a
small change can have a drastic effect on meaning, suitable noise models are less intuitive. It is not feasible to
guarantee the noise does not change the correct translation of the input.

Local reordering. Lample et al. (2018a) perform a local reordering operation σ that they call slightly shuffling
the sentence. The reordering is achieved by adding to the index i of each token a random offset drawn from the
uniform distribution from 0 to a maximum distance k. The tokens are then sorted according to the offset indices.
This maintains the condition ∀i ∈ {1, n}, |σ(i)− i| ≤ k.

Token deletion. Randomly dropping tokens is perhaps the most commonly used noise. It is the central idea in
word dropout (Iyyer et al., 2015). In word dropout, each token is dropped according to a Bernoulli distribution
parameterized by a tunable dropout probability.

Token insertion. Randomly selected tokens can also be inserted into the sentence. The tokens can be sampled
from the entire vocabulary, or from a particular class of tokens. E.g. Vaibhav et al. (2019) insert three classes of
tokens: stop words, expletives, and emoticons.
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Token substitution. SwitchOut (Wang et al., 2018) applies random substitutions to tokens both in the source
and the target sentence. One benefit of SwitchOut is that it can easily and efficiently be applied late in the data
processing pipeline, even to a numericalized and padded minibatch. Any noises that affect the length of the
sequence are best applied before numericalization.

Token masking. Masked language models (Devlin et al., 2019; Song et al., 2019; Lewis et al., 2019; Joshi et al.,
2020) apply a special case of token substitution, randomly substituting tokens or spans of tokens with a mask
symbol.

Word boundary noise. In a special case of token substitution, the substituted token is selected deterministically
as the token with a word boundary marker either added or removed. E.g. “kielinen” would be substituted by

“ kielinen” and vice versa. This might improve robustness to compounding mistakes such as “*suomen kielinen”
(Finnish speaker).

Taboo sampling. In addition to training the translation model, the idea of subword regularization (Kudo, 2018)
can be used in the autoencoder. Here, we propose taboo sampling as a special form of subword regularization for
monolingual data. The method takes a single word sequence as input, and outputs two different segmentations
for it. The two segmentations consist of different subwords, whenever possible. Only single character morphs are
allowed to be reused on the other side, to avoid failure if no alternative exists. E.g. “unreasonable” could be
segmented into “un ++reasonable” on the source side and “unreason ++able” on the target side. When converted
into numerical indices into the lexicon, these two representations are completely different. The task aims to
teach the model to associate with each other the multiple ambiguous ways to segment a word, by using a
segmentation-invariant internal representation.

For each word, one segmentation is sampled in the usual way, after which another segmentation is sampled
using taboo sampling. During taboo sampling, all multi-character subwords used in the first segmentation have
their emission probability temporarily set to zero. To avoid introducing a bias from having all the taboo sampled
segmentations on the same side, the sides are mixed by uniformly sampling a binary mask of the same length as
the sentence from the set of masks with half the bits 1. All words for which the mask bit is set have the source
and target segmentations swapped.

Proposed noise model combinations. Our proposed noise model combination is depicted in Figure 3. It consists of
three pipelines: The pipeline for parallel data (a) consists of only sampling segmentation. The primary pipeline
for monolingual data (b) is a concatenation of multiple noise models: local reordering, segmentation, and token
deletion. A secondary pipeline for monolingual data (c) uses taboo segmentation. In all cases the output consists
of a pair of source and target sequences.

Observe that the transformations are applied in the data loader at training time, not as an off-line preprocessing
stage. This allows the noise to be resampled for each parameter update, which is critical when training continues
for multiple epochs of a small dataset. As a minor downside, the NMT software needs to be modified to
accommodate the heavier data loader, while preprocessing generally requires no modifications to the software.

4 Vocabulary construction

The vocabulary or lexicon of a translation model is the set of basic units or building blocks the text is decomposed
into. In phrase-based machine translation, the standard approach is to use a word lexicon. Segmentation into
subword units has been proposed mostly for morphologically rich languages, for which a word lexicon leads to
very high out-of-vocabulary (OOV) rates (Lee, 2004; Oflazer and El-Kahlout, 2007; Virpioja et al., 2007), and
character segmentation for closely related languages (Tiedemann, 2009). However, the change of paradigm to
neural machine translation has changed also the practice in vocabulary construction: With the exception of
unsupervised translation based on pretrained word embeddings (Artetxe et al., 2018; Yang et al., 2018), the
standard approach for models is segmentation into subword units (Sennrich et al., 2015). Some studies aim even
to the other extreme, characters (Chung et al., 2016; Costa-jussà and Fonollosa, 2016) or bytes (Costa-jussà
et al., 2017).

A specific task in subword segmentation is the morphological surface segmentation. There the aim is to split
words into morphs, the surface forms of meaning-bearing sub-word units, morphemes. The concatenation of the
morphs is the word, for example

capability 7→ cap++ abil ++ ity.
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Fig. 3: Transformations applied to data at training time. Steps with blue background are part of the stochastic
noise model. Steps with white background are the deterministic target language token prefixing and length
filtering. Length filtering must be applied after segmentation, which may make the sequence longer.

Unsupervised morphological segmentation, dating back to Harris (1955), was an active research topic in 2000s and
early 2010s (Goldsmith, 2001; Creutz and Lagus, 2007; Hammarström and Borin, 2011), and the methods have
been evaluated in various NLP applications (Kurimo et al., 2010; Virpioja et al., 2011). However, in applications
based on neural network models, such as NMT, the correspondence of the subwords to linguistic morphemes is
not of high importance, as the encoders are able to determine the meaning of the units in context. Therefore the
subword segmentation is typically tuned using other criteria, such as the size of subword lexicon or the frequency
distribution of the units. Desirable characteristics for a vocabulary to be used in multilingual NMT include:

1. high coverage of the training data, without imbalance between languages,
2. a tractable size for training, and
3. the right level of granularity for cross-lingual transfer.

Without a high coverage, some parts of the training data are impossible to represent using the vocabulary. The
unrepresentable parts may be replaced with a special “unknown” token. If the proportion of unknown tokens
increases, translation quality deteriorates. In a multilingual setting, a common approach is to use a shared
subword vocabulary between the multiple source or target languages. In this case, training the segmentation
model with a balanced data distribution is important to provide high coverage also for the less resourced
languages.

Vocabulary size affects both the memory complexity via the number of network parameters and the
computational cost via the length of the sequences and the size of the softmax layer. When using large
vocabularies, e.g. words, the sequences are short, but vocabularies may grow intractably large, particularly for
morphologically complex languages. When using small vocabularies, e.g. characters, memory requirements are
low, but long sequences make training slow, particularly for recurrent networks.

The granularity of the segmentation affects both coverage and size of the lexicon: finer granularity typically
means better coverage and smaller lexicon size. However, within the reasonable limits set by the coverage and
size, it is much harder to determine the best possible level of granularity. Recent research (Cherry et al., 2018;
Kreutzer and Sokolov, 2018; Arivazhagan et al., 2019) indicates that smaller subwords are particularly useful for
cross-lingual transfer to low-resource languages in supervised settings. Exploiting similarity of related languages
by increasing the consistency of the segmentation between similar words of the source and target language
can also be useful (Grönroos et al., 2018). In unsupervised NMT (Artetxe et al., 2018), cross-lingual transfer
requires basic units to be aligned between languages without use of parallel data. When starting with pretrained
embeddings, longer units are typically used, as they carry more meaning than short units. It is therefore an open
question how the optimal segmentation granularity varies with the amount of resources available.
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Next, we consider different data-driven segmentation methods proposed for machine translation. This study
focuses on segmentation methods applying a unigram language model . In the unigram language model,
it is assumed that the morphs in a word occur independently of each other. Given the parameters θ of the
segmentation model, the probability of a sequence of morphs s decomposes into the product of the probabilities
of the morphs m of which it consists:

Pθ(s) =

N∏
i=1

Pθ(mi), (1)

4.1 Byte Pair Encoding

The most popular method for subword segmentation in the field of NMT is currently the Byte Pair Encoding
(BPE) compression algorithm (Gage, 1994). The BPE algorithm iteratively replaces the most frequent pair of
bytes in the data with a single unused byte. In NMT, the algorithm is typically used on characters, and the
merging of characters is stopped when the given vocabulary size is reached (Sennrich et al., 2015). While BPE is
not a probabilistic model, the coding resembles unigram language models in that every subword mi is encoded
individually. As a bottom-up algorithm, BPE is reasonable to use in multilingual settings just by concatenating
the corpora before training; this approach is called joint segmentation (Sennrich et al., 2015). If the data is
balanced over the languages, the frequent words will be constructed in the early steps of the algorithm for all
languages.

4.2 SentencePiece

SentencePiece (Kudo, 2018; Kudo and Richardson, 2018) is another segmentation method proposed especially for
NMT. In contrast to BPE, it defines a proper statistical model for the unigram model in Equation 1, and tries
to find the model parameters that maximize likelihood of the data given a constraint on the vocabulary size.

For training the model, SentencePiece applies the Expectation Maximization (EM) algorithm (Dempster
et al., 1977). The EM algorithm only updates the expected frequencies of the current units; it is not able to add
or remove subwords from the vocabulary. Thus to use EM for the segmentation problem, two other things are
needed: a seed lexicon and a pruning phase . The seed lexicon initializes the vocabulary with useful candidate
units, and pruning phase removes the least probable units from the model. Prior to SentencePiece, a similar
approach has been proposed by Varjokallio et al. (2013) for application in automatic speech recognition.

In SentencePiece, the seed lexicon is constructed from the most frequent substrings in the training data.
After initializing the seed lexicon, SentencePiece alternates between the EM phase and the pruning phases until
the desired vocabulary size is reached. In the pruning phase, the subwords are sorted by the reduction in the
likelihood function if the subword was removed. A certain proportion (e.g. 25%) of the multi-character subwords
are pruned at a time, followed by the next EM phase.

4.3 Morfessor EM+Prune

Morfessor is a family of generative models for unsupervised morphology induction (Creutz and Lagus, 2007).
Here, consider the Morfessor Baseline method (Creutz and Lagus, 2002; Virpioja et al., 2013) and its recent
Morfessor EM+Prune variant (Grönroos et al., 2020).

4.3.1 Model and cost function

Morfessor Baseline is applies the unigram language model (Equation 1). In contrast to SentencePiece, Morfessor

finds a point estimate for the model parameters θ̂ using Maximum a Posteriori (MAP) estimation. The MAP
estimate yields a two-part cost function, consisting of a prior (the lexicon cost) and likelihood (the corpus cost).
The Morfessor prior, inspired by the Minimum Description Length (MDL) principle (Rissanen, 1989), favors
lexicons containing fewer, shorter morphs.
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For tuning the model, Kohonen et al. (2010) propose weighting the likelihood with a hyper-parameter α:

θ̂ = arg min
θ
{− log

prior︷ ︸︸ ︷
P (θ) −α log

likelihood︷ ︸︸ ︷
P (D |θ)} (2)

This parameter controls the granularity of the segmentation. High values increase the weight of each emitted
morph in the corpus (less segmentation), and low values give a relatively larger weight to a small lexicon (more
segmentation).

Similar to SentencePiece, Morfessor can be used in subword regularization (Kudo, 2018). Alternative
segmentations can be sampled from the full data distribution using the forward-filtering backward-sampling
algorithm (Scott, 2002) or approximatively from an n-best list.

4.3.2 Training algorithm

The original training algorithm of the Morfessor Baseline method, described in more detail by Creutz and Lagus
(2005) and Virpioja et al. (2013), is a local greedy search. The lexicon is initialized by whole words, and the
segmentation proceeds recursively top-down, finding an optimal segmentation into two parts for the current word
or subword unit. Our preliminary studies have indicated that this algorithm does not find as good local optima
as the EM algorithm especially for the small lexicons useful in NMT. As a solution, we have developed a new
variant of the method called Morfessor EM+Prune (Grönroos et al., 2020).1 It supports the MAP estimation and
MDL-based prior of the Baseline model, but implements a new training algorithm based on the EM algorithm
and lexicon pruning inspired by SentencePiece.

The training algorithm starts with a seed lexicon and alternates the EM and lexicon pruning steps similarly
to SentencePiece. The prior of the Morfessor model must be slightly modified for use with the EM algorithm,
but the standard prior is used during pruning. While SentencePiece aims for a predetermined lexicon size, in
Morfessor, the final lexicon size is controlled by the hyper-parameter α (Equation 2). To reach a subword lexicon
of a predetermined size while using the prior, Morfessor EM+Prune implements an automatic tuning procedure.
When the estimated change in prior and likelihood are computed separately for each subword, the value of α
that gives exactly the desired size of lexicon after the pruning can be calculated.

In earlier work (Grönroos et al., 2020), we have shown that the EM+Prune algorithm reduces search error
during training, resulting in models with lower costs for the optimization criterion. Moreover, lower costs lead
to improved accuracy when segmentation output is compared to linguistic morphological segmentation. In the
present study, we test it for the first time in NMT.

5 Experiments

In the experiments, we study how to best exploit the additional monolingual and cross-lingual resources for
improving machine translation into low-resource morphologically rich languages. We compare various methods
for three major aspects affecting the translation quality: using cross-lingual transfer, exploiting monolingual
data and applying subword segmentation. The main focus lies on a noise model incorporating the subword
segmentation.

We target a one-to-many multilingual setting with related, morphologically rich languages on the target side.
The related languages include both high- and low-resource languages. This setting provides a good opportunity
for cross-lingual learning, as the amount of data is highly asymmetric. Our aim is not to achieve an interlingual
representation, so allowing the encoder to specialize for target languages is acceptable if it improves performance.

5.1 Data sets

We perform experiments on four translation tasks, each consisting of a language triple: source language (SRC),
high-resource target language (HRL) and low-resource target language (LRL). We only show SRC-LRL translation
results, as the goal is to improve this particular translation direction.

The four tasks (LRL in boldface) are:

1 Software available at https://github.com/Waino/morfessor-emprune.
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1. English (eng) to Finnish (fin) and Estonian (est),
2. English to Czech (cze) and Slovak (slo),
3. English to Swedish (swe) and Danish (dan),
4. Norwegian bokm̊al (nob) to Finnish (fin) and North Sámi (sme).

In each task the two target languages are related. The target languages belong to three different language
families: Germanic, Balto-Slavic and Uralic. All target languages are morphologically complex.

We use as parallel corpora Europarl (Koehn, 2005), and OpenSubtitles v2018 (Lison and Tiedemann, 2016),
when available. In addition, we use the eu, news, and subtitle domains of CzEng v1.7 (Bojar et al., 2016), and
the UiT freecorpus2. The corpora used for each language pair are shown in Table 2. The domains for the training
data are parliamentary debate, movie subtitles, news and web, with the exception of North Sámi which contains
a mix of many domains.

Our main source of monolingual data is WMT news text3. In addition, we use the following monolingual
corpora: skTenTen4 and Categorized News Corpus5 for Slovak, Riksdagens protokoll6 for Swedish, News 20127

for Danish, Aviskorpus8 for Norwegian, and Wikipedia9 for North Sámi.

Table 2: Parallel corpora.

Europarl OpenSubtitles Other parallel

eng cze CzEng
eng slo X X
eng fin X X Rapid2016, Paracrawl
eng est X X
eng swe X X
eng dan X X
nob fin X
nob sme UiT freecorpus

For each of the low-resource languages, we select a subset of 18k sentence pairs. For eng-est, we also perform
an experiment where the low-resource subset is repeatedly subsampled down to 3k sentence pairs. To avoid
introducing a domain imbalance in the sampled subset, the pairs are sampled such that an equal number of
sentences are selected uniformly at random from each cleaned corpus. The training data sizes after cleaning and
subsampling are shown in Table 3.

Table 3: Data set sizes after cleaning.

Parallel Monolingual

SRC HRL LRL SRC-HRL SRC-LRL BT SRC HRL LRL

eng cze slo 24.7M (18k) 1M 44.3M 13.6M 27.8M
eng fin est 19.4M (18k) 1M 44.3M 6.3M 3.6M
eng swe dan 11.5M (18k) 750k 44.3M 10.7M 950k
nob fin sme 4.9M 152k 150k 40.1M 6.3M 181k

As test sets we use the WMT newstest2018 (Bojar et al., 2018) for eng-est, the WMT test2011 extended
to Slovak by Galuščáková and Bojar (2012) for eng-slo. For eng-dan we use 2k sentence pairs sampled
from the JRC-Acquis corpus (Steinberger et al., 2006). For nob-sme we use the Apertium story “Where is
James?”, a 48-sentence text with simple language, used as an initial development set for Apertium rule based
MT systems (Forcada et al., 2011).

2 https://victorio.uit.no/freecorpus/
3 http://www.statmt.org/wmt18/translation-task.html
4 http://hdl.handle.net/11858/00-097C-0000-0001-CCDB-0
5 Technical University of Kosice, 2014
6 https://spraakbanken.gu.se/eng/resource/rd-prot
7 http://hdl.handle.net/11022/0000-0000-2238-B
8 https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-4&lang=en
9 sewiki-20191201 dump
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5.2 Evaluation measures

When selecting the evaluation measures, the morphologically rich target languages must be taken into account.
Therefore, we use Character-F1 (Popović, 2015) in addition to BLEU10 (Papineni et al., 2002). To evaluate the
performance of systems on rare words, we use word unigram F1 score computed over words occurring less than 5
times in the parallel training data (Sennrich et al., 2015).

5.3 Training details

Table 4: Specifications for the NMT system.

Encoder 8 Transformer layers Label smoothing 0.1
Decoder 8 Transformer layers Precision 16-bit floating point

Hidden size 1024 Minibatch size 9200 subword tokens
Filter size 4096 Gradient accumulation 4 minibatches

Attention heads 16 Effective minibatch size 36800 subword tokens
Adam beta2 0.997 Training time 100k steps

Warmup noam, 16k steps Beam size 8
Dropout weight 0.1 Heuristic penalties None

We use the Transformer NMT architecture (Vaswani et al., 2017). Model hyper-parameters are shown in
Table 4. Training takes approximatively 96h on a single V100 GPU, with the data loader in a separate process.
When using scheduled multi-task learning, the mixing distribution is changed after 40k steps. In all experiments,
we apply full parameter sharing using a target language token. We tune our models towards the best product of
the three evaluation measures (charF1, BLEU, rare word F1) on a development set.

Back-translation was performed with essentially the same system, but with sources and targets swapped to
achieve a many-to-one configuration. We mark the back-translation data as synthetic using a special token.

When using subword regularization or denoising autoencoder, the training data is not simply loaded from
disk, but new random segmentations and noises are sampled each time a training example is used. To alleviate
slowdown, we moved the dataloader and preprocessing pipeline into a separate process, which communicates the
numericalized and padded minibatches to the training process via a multiprocessing queue. Our data loader is
implemented as a fork of OpenNMT-py11 (Klein et al., 2017).

With multilingual training, autoencoders and back-translation, our setting involves a large number of different
tasks. The tasks can be divided by language (HRL, LRL) and by type (translation, autoencoder). Nearly all
runs, with the exception of our vanilla baseline, use a mix of tasks in some or all phases.

5.4 Results

In this section, we present the results of ten experiments, each exploring a separate aspect of asymmetric-resource
one-to-many NMT. We have detailed results for English–Estonian, and verify the central findings on two
additional language triples. Finally, we present some results on the actual low-resource pair Norwegian–North
Sámi.

Unless otherwise stated, the compared models are trained using joint Morfessor EM+Prune segmentation
with 16k subword vocabulary, cross-lingual scheduled multi-task learning, autoencoder with full noise model,
and subword regularization for the translation task. Our initial results are using autoencoder tasks for all three
languages (SRC+HRL+LRL). Later some of the results were rerun with the better SRC+LRL configuration,
which omits the high-resource target language autoencoder.

10 mteval-v13a.pl
11 Software available at https://github.com/Waino/OpenNMT-py/tree/dynamicdata. Later, the dataloader of OpenNMT-py version

2.0 was redesigned to incorporate our proposals.
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Fig. 4: Varying the subword vocabulary. Multilingual models, with SRC+HRL+LRL autoencoder and full noise
model, except for BPE which are multilingual models without autoencoder or noise. Results on English→Estonian
newsdev2018.

5.4.1 Subword segmentation

For subword segmentation, we compare Morfessor EM+Prune to SentencePiece on various vocabulary sizes.
The results are shown in Figure 4. There is no clear optimal vocabulary size: in particular for the Character
F1 measure the performance remains nearly constant. On the test set, Morfessor EM+Prune is +0.6 BLEU
better than SentencePiece. The difference is smaller than the +1.48 BLEU difference on the development set,
but consistent. The difference between Morfessor EM+Prune and SentencePiece is similar for the eng-dan and
eng-slo translation directions. In preliminary experiments BPE gave 0.65 BLEU worse results than EM+Prune
already without subword regularization. We decided against further experiments using BPE, as it is incompatible
with subword regularization.

5.4.2 Cross-lingual transfer

Table 5 shows the effect of multilingual training, with and without the autoencoder task. The cross-lingual transfer
from the high-resource language yields the largest single improvement in our experiments. The multilingual
model without autoencoder performs between +10.26 and +12.7 BLEU better than the vanilla model using only
LRL parallel data. Adding an autoencoder loss results in a smaller gain, between +4.97 and +5.55 BLEU. The
gains are partly cumulative for an additional gain of +0.05 to +1.14 BLEU.

Table 5: Results for cross-lingual transfer. Abbreviations: ML for multilingual, BT for back-translation, AE for
autoencoder.

Autoencoder eng–est eng–dan eng–slo

Method ML BT SRC HRL LRL chrF1 BLEU rare chrF1 BLEU rare chrF1 BLEU rare

Both X X X 51.71 14.04 34.79 50.06 13.92 54.58 50.19 14.02 69.94
Only ML X 50.09 12.90 33.20 49.57 13.13 54.21 49.83 13.97 68.79
Only AE X X 42.65 8.19 21.59 42.26 7.60 44.48 38.97 6.25 62.51
Neither (vanilla) 29.46 2.64 6.22 31.95 2.63 30.40 23.76 1.27 36.80

The results for the vanilla model use a smaller configuration, with 4 encoder and 4 decoder layers, and batch
size reduced to 2048. For the vanilla model the small network performed better than the large one, but when
adding either multilingual training or autoencoder, the large network is superior.
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Fig. 5: Learning curves on LRL English→Estonian
development set. Multilingual models, with
SRC+HRL+LRL autoencoder and full noise model.
Note that up to 40k training steps, the model using
scheduled multi-task learning has not seen any LRL
data.
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Fig. 6: The task mix schedule used in the 3-phase
scheduled multi-task learning experiment. The 2-
phase schedule is the same, except it omits the third
phase, continuing the second phase until the end of
training.

5.4.3 Scheduled multi-task learning

Figure 5 shows the learning curves on the development set and Table 6 the evaluations on the test set for different
configurations of transfer learning.

Multi-task without schedule is trained with a constant task mixing distribution. The result marked HRL
pretraining, LRL fine-tuning uses a mix of HRL translation and autoencoder tasks for pretraining, and only
a single task—LRL translation—for fine-tuning, and is thus fully sequential in terms of languages. It quickly
overfits in the fine-tuning phase.

The models using scheduled multi-task learning combine sequential and parallel transfer. In 2-phase scheduled
multi-task, LRL tasks are not used in the pretraining phase, but a mix of tasks is used for fine-tuning. It gives
a benefit of +2.4 BLEU compared to the model fine-tuning on only LRL tasks, and +1.77 BLEU compared
to training with a constant mixing distribution. The 3-phase scheduled multi-task adds a third phase training
mostly on LRL tasks. A small proportion of HRL translation is included to delay overfitting. The model again
overfits in the final phase, but does reach a higher score before doing so. The 3-phase task mixing schedule is
shown in Figure 6.

Table 6: Results for scheduled multi-task learning.

Autoencoder eng–est eng–dan eng–slo

Method ML BT SRC HRL LRL chrF1 BLEU rare chrF1 BLEU rare chrF1 BLEU rare

3-phase scheduled multi-task X X X X 51.71 13.94 33.96 50.1 13.7 54.6 50.1 14.1 69.7
2-phase scheduled multi-task X X X X 51.42 13.75 33.83 49.8 13.5 55.3 50.2 14.0 69.7
Multi-task w/o schedule X X X X 48.62 11.98 29.16 48.0 12.2 52.5 48.3 12.6 68.8
HRL pretraining, LRL fine-tuning X X X X 48.15 11.35 29.88 47.8 11.6 49.9 47.0 11.4 66.3
Subnetwork pretraining X X X X 47.74 11.17 26.93

Torrey and Shavlik (2009) describe three ways in which transfer learning can benefit training: 1) higher
performance at the very beginning of learning, 2) steeper learning curve, and 3) higher asymptotic performance.
When pretraining the encoder and decoder on source and target autoencoder tasks respectively, we see the
first of these, but not the other two: for eng–est NMT training at first improves faster than with random
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initialization, but converges to a worse final model. As the approach was clearly inferior, we did not use it for the
other language pairs. However, we have not tested pretraining on a next token prediction or masked language
modeling task.

5.4.4 Dataset augmentation – Subword regularization

Table 7 shows an improvement between +0.08 and +0.55 BLEU from using subword regularization as the only
noise model, without the use of an autoencoder.

Table 7: Results with subword regularization (SWR).

Autoencoder eng–est eng–dan eng–slo

Method ML BT SRC HRL LRL chrF1 BLEU rare chrF1 BLEU rare chrF1 BLEU rare

SWR X 50.09 12.90 33.20 49.57 13.13 54.21 49.83 13.97 68.79
no SWR X 49.77 12.57 31.14 49.27 13.05 53.66 49.27 13.42 69.07

5.4.5 Dataset augmentation – Autoencoder

Table 8 shows an ablation experiment for the noise model. When compared against only using the subword
regularization, the additional noises give between +0.2 and +0.5 BLEU. All parts of the noise model are
individually ablated: the most important is local reordering, which when omitted causes a decrease of -0.36
BLEU. The full noise model includes subword regularization. When subword regularization is ablated, we turn it
entirely off, both for the parallel data and the autoencoder. Word boundary noise, taboo sampling, and insertions
are not included in our full noise model, as they did not show a benefit on the development set. However, word
boundary noise gives +0.2 BLEU and taboo sampling +0.09 BLEU on the test set.

Table 8: Ablation results for noise model. Ordered by decreasing BLEU.

Autoencoder eng–est

Method ML BT SRC HRL LRL chrF-1.0 BLEU rare

+ Word boundary noise X X X X 51.56 13.95 33.20
+ Taboo sampling X X X X 51.23 13.84 33.81
No drop X X X X 51.48 13.79 33.89
Full noise X X X X 51.42 13.75 33.83
+ Insertion X X X X 50.88 13.74 33.51
Only switchout X X X X 50.78 13.49 32.21
No SWR X X X X 50.71 13.46 32.18
Only SWR X X X X 50.96 13.43 32.85
No reorder X X X X 50.90 13.39 33.03

We also consider for which languages an autoencoder task should be added. Table 9 shows variants starting
from no autoencoder, adding autoencoders one by one first for the low-resource target language, then for the
source language and finally for the high-resource target language. The best combination uses source and LRL,
with the SRC autoencoder giving a gain of +0.11 BLEU over only using the LRL. The HRL autoencoder is
detrimental, and leaving it out gives +0.29 BLEU.

5.4.6 Dataset augmentation – Back-translation

Table 10 shows the improvements gained using back-translated synthetic data. We weight the natural and
synthetic LRL data equally. Back-translation is generally effective, giving a benefit between +1.31 and +4.46
BLEU. When using back-translated data, the autoencoder task is less effective, with small improvements to
Character F1 but inconsistent results for the other measures. Note that back-translation is not a silver bullet. The
Vanilla BT system uses only back-translation, but not multilingual training or autoencoder: the back-translation
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Table 9: Autoencoder language tasks.

Autoencoder eng–est

Method ML BT SRC HRL LRL chrF-1.0 BLEU rare

SRC+LRL AE X X X 51.71 14.04 34.79
LRL AE X X 51.41 13.93 33.57
SRC+HRL+LRL AE X X X X 51.42 13.75 33.83
No AE X 50.09 12.90 33.20

Fig. 7: Varying the amount of low-resource data. Multilingual models, with SRC+HRL+LRL autoencoder and
full noise model. Results on English→Estonian newstest2018.

is performed with a weak model trained only on the low-resource parallel data, and then a forward model is trained
augmented only by this low-quality back-translation. The performance when using only back-translation is very
low: only +2.87 BLEU better than the vanilla model without back-translation. The high-quality back-translation
together with multilingual training gives an +12.7 BLEU increase over the vanilla back-translation.

Table 10: Results using back-translation. X† indicates the use of a low-quality back-translation made with a
non-multilingual non-autoencoder vanilla BT model.

Autoencoder eng–est eng–dan eng–slo

Method ML BT SRC HRL LRL chrF1 BLEU rare chrF1 BLEU rare chrF1 BLEU rare

Full BT X X X X 56.45 18.05 41.13 51.27 14.80 56.63 52.80 16.87 70.97
No AE, full BT X X 56.33 18.15 40.85 51.20 15.00 57.39 52.65 16.63 70.82
AE, no BT X X X 51.71 14.04 34.79 50.06 13.92 54.58 50.19 14.02 69.94
Vanilla BT X† 36.12 5.51 13.25

5.4.7 Amount of low-resource language data

Figure 7 shows how the performance degrades when the low-resource parallel data is reduced. Each set is
subsampled from the previous larger set. All models use multilingual training with scheduled multi-task learning,
and SRC+HRL+LRL autoencoders. Down to 10k parallel sentences the performance stays reasonable, after
which it rapidly deteriorates.

Also plotted is a 10k sentence pair baseline by Kocmi and Bojar (2018), reaching 12.46 BLEU in a similar
setting on the same test set. Our result at 10k is 13.04 BLEU, or +0.68.
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5.4.8 Relatedness of the target languages

Table 11 shows the results of using an unrelated but larger HRL (Czech). The results favor transfer from the
related HRL (Finnish), by +0.92 BLEU. The difference in favor of the related HRL is largest for the rare words.

Table 11: HRL language relatedness.

Autoencoder eng–est

Method ML BT SRC HRL LRL chrF-1.0 BLEU rare

Within family fin X X 51.71 14.04 34.79
Cross family cze X X 50.20 13.12 30.69

Previously, Zoph et al. (2016) and Dabre et al. (2017) find that related parent languages result in better
transfer. However, Kocmi and Bojar (2018) find in the case of Estonian that a bigger parent (Czech) gave better
results than a more related parent (Finnish). Our results contradict Kocmi and Bojar (2018) and agree with the
prior literature.

5.4.9 Norwegian bokm̊al → Finnish + North Sámi

We apply the findings of the previous experiments to the low-resource pair Norwegian bokmål to North Sámi.
We use a larger task mix weight for the LRL task (40 SRC-HRL / 30 SRC-LRL / 30 BT) to account for the
larger LRL parallel data. Table 12 shows the results to be similar to the results of the other languages, with
benefit from multilingual training, autoencoder task and back-translation.

Table 12: Results on Norwegian Bokm̊al–North Sámi Apertium story.

Autoencoder nob–sme

Method ML BT SRC HRL LRL chrF-1.0 BLEU rare

ML, AE, BT X X X X 57.27 24.40 35.62
ML, AE X X X 54.86 21.07 21.54
Vanilla 45.97 15.64 21.05

5.5 Discussion

In our experiments for four asymmetric-resource one-to-many translation tasks, we find that the largest gains
come from cross-lingual transfer (up to +12.7 BLEU), back-translation (up to +4.46 BLEU), and scheduled
multi-task learning (up to +2.4 BLEU). To sum up our findings related to the questions asked in the introduction:

On cross-lingual transfer, we find that applying scheduled multi-task learning is superior to both fully
sequential and fully parallel transfer. In scheduled multi-task learning, the model is first pretrained on a mix
of only high-resource tasks and then fine-tuned using a mix of both high- and low-resource tasks. A second
fine-tuning phase only on the low-resource tasks is prone to overfitting.

On exploiting monolingual data, a low-resource target-language autoencoder is beneficial, even when using
multilingual training, but inconclusive together with back-translation. A source-language autoencoder is also
helpful, to a lesser degree, but a high-resource target autoencoder is not. A noise model including subword
regularization, reordering, and deletion is beneficial. The results for substitutions and the proposed taboo
sampling method are inconclusive.

On vocabulary construction, Morfessor EM+Prune is superior to SentencePiece in this translation setting,
for a gain of +0.6 BLEU. As the methods use the same training algorithm, it indicates that the prior used in
Morfessor is beneficial in finding efficient subword lexicons. The vocabulary size has less effect (up to 0.5 BLEU
for sizes between 8k and 20k) on the results. Subword lexicon size has been considered an important parameter
to tune (Sennrich and Zhang, 2019; Salesky et al., 2020). Also our preliminary experiments of low-resource NMT
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without subword regularization suggested a more substantial effect for the lexicon size. It seems that the subword
sampling procedure (and perhaps the autoencoder task) lessens the impact of the subword vocabulary size.

Regarding available data and languages, larger low-resource parallel data give better results, but diminishing
returns are already reached after 10k sentences. We find language relatedness to be more important than parent
language size in highly asymmetrical transfer. Sennrich and Zhang (2019) find that smaller models and batch
sizes work better in low-resource settings. We find that large models are better whenever auxiliary multilingual
or monolingual data is used. While in the vanilla setting, the smaller model is better, it still falls far behind the
models using additional data.

Among the translation tasks, we get the lowest scores in the English–Danish translation. While Danish has
the smallest LRL monolingual corpus, as the same order is observed also for the models not using monolingual
data, the reason must lie elsewhere, possibly in the difficulty of the JRC-Acquis corpus. The autoencoder
task has the largest benefit for English–Estonian. In the Norwegian–North Sámi experiment the size of the
low-resource parallel data is an order of magnitude larger than in the other experiments, but the results
remain similar. Due to the small size of the test set, we include the entire translation output in Ancillary File
translated.apertium.story.txt.

The three evaluation measures—BLEU, Character F1, and rare words F1—generally agree. Some exceptions
include ablation of the subword regularization and using SwitchOut as the sole noise model, which hurt in
particular the rare words more than BLEU. Turning off the autoencoder has the least effect on rare words, even
giving a slight improvement for eng–dan when using back-translation.

Our results again underscore the need to gather parallel data for low-resource language pairs. This may be
possible to accomplish at reasonable cost, as 10k sentence pairs already goes a long way. Monolingual corpora of
high quality and quantity are also of great importance as auxiliary data for MT.

6 Conclusion

When training a neural translation model for low-resource languages with limited parallel training data, it
is important to make use of efficient methods for cross-lingual learning, data augmentation, and subword
segmentation. Our experiments in asymmetric-resourced one-to-many translation show that the largest individual
improvements come from any cross-lingual transfer learning and augmenting the training data with back-
translation. However, considerable benefits are gained also by less common approaches: scheduled multi-task
learning, subword regularization, and a denoising autoencoder with multiple noise models. For this reason, we
strongly recommend that NMT frameworks should include a dataloader with the ability to (a) sample noisy
minibatches for training and (b) use a schedule for controlling the mixing of different tasks. Subword sampling
requires a probabilistic segmentation model such as SentencePiece or Morfessor, making them preferable to
the more common BPE method. Both our data loader implementation for the OpenNMT-py system and the
Morfessor EM+Prune software are available with non-restrictive licenses.
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Abstract

This article describes the Aalto University
entry to the English-to-Finnish news trans-
lation shared task in WMT 2017. Our sys-
tem is an open vocabulary neural machine
translation (NMT) system, adapted to the
needs of a morphologically complex target
language. The main contributions of this
paper are 1) implicitly incorporating mor-
phological information to NMT through
multi-task learning, 2) adding an attention
mechanism to the character-level decoder,
combined with character segmentation of
names, and 3) a new overattending penalty
to beam search.

1 Introduction

The rich inflection, derivation and compounding in
synthetic languages can result in very large vocab-
ularies. In statistical machine translation (SMT)
large vocabularies cause sparsity issues. While
continuous space representations make neural ma-
chine translation (NMT) more robust towards such
sparsity, it suffers from a different set of prob-
lems related to large vocabularies. A large vo-
cabulary bloats memory and computation require-
ments, while still leaving the problem of out-of-
vocabulary words unsolved.

Subword vocabularies have been proposed as a
solution. While the benefits of using subwords in
SMT have been at best moderate (Virpioja et al.,
2007; Fishel and Kirik, 2010; Grönroos et al.,
2015), subword decoding has become popular in
NMT (Sennrich et al., 2015). A subword vocabu-
lary of a moderate size ensures full coverage of an
open vocabulary. The downside is an increase in
the length of the input and output sequences. Long
sequences cause a large increase in computation

time, especially for architectures using the atten-
tion mechanism.

An alternative approach is the hybrid word-
character decoder presented by Luong and Man-
ning (2016). In the hybrid decoder, a word level
decoder outputs frequent words as they are, while
replacing infrequent words with a special <UNK>
symbol. A second character-level decoder then ex-
pands these <UNK> symbols into surface forms.

In addition to providing moderate length of in-
put and output sequences together with an open
vocabulary, the hybrid word-character decoder
makes it simple to use labels based on the level
of words, provided for example by morphological
analyzers and parsers. In SMT, such tools are typ-
ically used via factored translation models (Koehn
and Hoang, 2007). Factored translation has also
been successfully applied in NMT. For example,
Sennrich and Haddow (2016) augment the source
words with four additional factors: PoS, lemma,
dependency label and subwords. García-Martínez
et al. (2016) use a decomposed generation process,
in which they first output lemma, PoS, tense, per-
son, gender, and number, from which the surface
form is generated using a rule-based morphologi-
cal analyzer.

Neural machine translation provides another
way to utilize external annotations, multi-task
learning (MTL). MTL is a well established ma-
chine learning approach that aims at improving
the generalization performance of a task using
other related tasks (Caruana, 1998). For exam-
ple, Luong et al. (2016) use autoencoding, pars-
ing, and caption generation as auxiliary tasks to
improve English-to-German translation. Eriguchi
et al. (2017) combine NMT with a Recurrent Neu-
ral Network Grammar. The system learns to parse
the target language as an auxiliary task when trans-
lating into English.

We propose an MTL approach inspired by fac-
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tored translation. The output of a morphological
analyzer for the target sentence is used as an aux-
iliary prediction target, while sharing network pa-
rameters to a larger extent than in the approach of
Luong et al. (2016).

This approach has two advantages over factored
models. When training a system using factored
output, embedded gold standard labels are given as
input to the decoder. During translation gold stan-
dard labels are not available, and predicted labels
are instead fed back in. The confidence of the pre-
dictions is not accounted for when feeding back the
labels. This might worsen the problems caused by
exposure bias, i.e., the mismatch between training
and inference (Ranzato et al., 2016). If factored in-
put is used, the external labeling tools need to be
included also in the translation pipeline. In MTL
such tools are only necessary during training.

In terms of computational cost, a factored model
needs to predict the auxiliary labels also during
translation, slowing down inference and compli-
cating the beam search. A factored model might
also need to use a larger beam to avoid hypothe-
ses with the same surface form but different labels
from crowding out more diverse hypotheses. In
MTL, the auxiliary tasks are only performed dur-
ing training, and no changes need to be made to
the inference.

The main contributions of this paper are com-
bining word-level labels from morphological anal-
ysis with a hybrid word-character decoder, and
adding an attention mechanism to the character-
level decoder. We also propose a new overattend-
ing penalty to the beam search.

2 Neural machine translation

Neural machine translation (NMT) is a frame-
work for machine translation that uses a single
neural network trained end-to-end. The recently
proposed encoder-decoder network with attention
mechanism (Bahdanau et al., 2014) has become ac-
cepted as the current standard in NMT.

The first part of the network, the encoder, reads
a source sentence x and encodes it as a sequence
of hidden states s = (s1, s2, . . . , sN ). The en-
coder is often implemented as a bidirectional recur-
rent network with long short-term memory units
(bi-LSTM), in which case each hidden state is the
concatenation of a state from the forward and back-
ward encoders.

The last part of the network, the decoder, is

implemented as a conditional recurrent language
model which models the probability of the target
sentence y as

log p(y | x) =
∑

t

log p(yt |y<t, x)

=
∑

t

log p(yt |ht, ct). (1)

The encoder and decoder are linked by the at-
tention mechanism. At each timestep, the atten-
tion mechanism computes a context vector ct as
a weighted average of the encoder hidden states
s. The weights at,i are determined by a layer that
takes as input the current decoder hidden state ht

and each of the vectors si in turn.

at,i(h, s) =
exp(align(ht, si))∑
j exp(align(ht, sj))

align(ht, si) = v⊤
a tanh(Wa[ht; si]) (2)

In effect, at each timestep the attention mechanism
scans the entire source to decide which parts are rel-
evant to focus on when generating the next output
symbol.

Luong and Manning (2016) extend the word-
level encoder-decoder model by adding character-
level processing of rare words. On the encoder
side, word embeddings for rare source words are
produced by a character-level encoder, instead of
using a universal <UNK> embedding. The hybrid
model ensures an open vocabulary, while keeping
the attended sequence shorter than using characters
or subwords.

On the decoder side, the word-level decoder out-
puts <UNK> for rare words, while storing the
decoder hidden state at that timestep. A separate
character-level decoder expands these tokens into
the surface form. The character-level encoder and
decoder can be trained jointly with the word-level
components, by backpropagating end-to-end.

In separate-path initialization of the character-
level decoder, the word-level LSTM output h is
not used to seed the character-level decoder, but
instead a counterpart vector h̆ is calculated as

h̆t = tanh(W̆ [ct; ht])

3 System description

Our system is based on the open-source Helsinki
Neural Machine Translation (HNMT) software1.

1Available from
https://github.com/robertostling/hnmt .
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Figure 1: Our neural network architecture. In the example, “Forget the hype” is translated into “Unohda
kohu”. On the left side, the hybrid word-character encoder, using bi-LSTM for both levels. On the lower
right side, the word-level attentional LSTM decoder, which predicts both word tokens and auxiliary labels.
Above it, the predicted <UNK> is expanded by the attentional character-level decoder. For clarity,
attention is only drawn for the first timestep of each decoder.

We extend2 HNMT with a hybrid word-character
decoder, multi-task learning, and improved beam
search. An overview of the neural network archi-
tecture can be seen in Figure 1.

Hybrid encoder-decoder. HNMT implements
a hybrid word-character encoder. Instead of the
two-level unidirectional LSTM character-level en-
coders of Luong and Manning (2016), bi-LSTM
encoders are used. The embedding for rare words
is the concatenation of the last states of the forward
and backward character-level encoders.

We extend HNMT with a hybrid word-character
decoder, using separate path initialization of the
character-level decoder. We also add an attention
mechanism to the character-level decoder, yield-
ing the character-level context vector c̆t,tc . The at-
tended sequence is the same as for the word-level
decoder: the word-level encoding s of the source
sentence. To make it possible for the attentional
character-level decoder to copy or transcribe on
a subword-level, we perform character segmenta-
tion preprocessing on capitalized input words (af-
ter truecasing). The segmentation is described in
Section 4.

Multi-task learning. The main task is transla-
2Our fork available from

https://github.com/Waino/hnmt .

tion into the target language surface form, while
the auxiliary tasks consist of predicting the out-
put of the FinnPos morphological analyzer for the
target sentence. The auxiliary tasks provide addi-
tional supervision signals that can help the model
learn grammar and morphology. The tasks share
parameters more closely than the one-to-many
multi-task learning setting defined by Luong et al.
(2016). In addition to sharing the encoder, all parts
of the word level decoder except the final feed-
forward prediction layers are shared. A potential
downside compared to using a separate decoder is
that the label sequence must be of the same length
and synchronous with the surface sequence. This
tightly shared MTL matches perfectly with the hy-
brid word-character decoder, as the labeling is on
the level of words. The work-around of repeating
labels to match the length of a subword sequence
was not explored in this work.

In MTL, the supervision from the labels is softer
than when using a factored model. Uncertain la-
bels could be ignored, by limiting the task to sen-
tences with high-confidence labels. We did not
use this opportunity, as FinnPos labels every in-
put sentence, and does not provide confidence esti-
mates. As all our data D is labeled, we control the
influence of the auxiliary task using a multiplica-
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tive weight on part of the cost function, instead of
the minibatch mixing ratio used by Luong et al.
(2016).

We train the whole model jointly to maximize

E(x,y,a)∈D[log p(y, a | x)]

where a are the labels: the cluster id of the lemma,
the rounded log-frequency of the lemma, the PoS,
and 5 morphological tags: number, case, person,
mood, and tense. Each label is independently pre-
dicted from the concatenation of h and h̆.

Beam search scoring function. We use beam
search during decoding to find the optimal trans-
lation sequence y. Instead of directly maximiz-
ing the probability, we maximize a score function
s(y, x), designed to alleviate two known issues in
NMT: overtranslation and undertranslation.

Undertranslation is reduced by adding length
normalization (lp) and a coverage penalty (cp), fol-
lowing Wu et al. (2016).

Unlike undertranslation, overtranslation is to
some extent inherently reduced by the mono-
tonically increasing generation log-probabilities.
However, the inherent cost is not enough, leading
us to add a penalty for overattending a source token
(oap). The penalty is applied if the most attended
source word has sum attention over 1.0. We use
the maximum function instead of sum, in order not
to increase the strength of the penalty for long in-
put sentences. The overattending penalty is mono-
tonically increasing, which enables us to include it
when pruning active hypotheses.

The overattending penalty is not suitable if the
decoder uses smaller units than the output of the en-
coder. Repeated attention is required if the decoder
must output several subwords for each source to-
ken.

The scoring function is

s(y, x) = − log
(
p(y | x)

)
+ lp(y)

+ cp(y, x) + oap(y, x), (3)

where

lp(y) =
(|y| + λ)α

(1 + λ)α
(4)

cp(y, x) =β

|x|∑

i=1

log
(

min(

|y|∑

j=1

aij , 1.0)
)

(5)

oap(y, x) = − γ max
( |x|

max
i=1

( |y|∑

j=1

aij − 1.0
)
, 0.0

)

(6)

The parameters α, β, γ, and λ control the strengths
of the penalties.

Pruning in beam search. We use three types
of pruning in the beam search.

First, at each step, for each hypothesis to be ex-
tended, we prune the list of candidates for the next
symbol based on local probability, to only keep
beam_width + 1 candidates. This pruning im-
proves speed without affecting the output.

Second, after at least one hypothesis has been
completed, we keep track of the current best nor-
malized score. This allows pruning active hypothe-
ses by comparing their partially normalized score
against the best normalized score, with adjustable
pruning margin. The partially normalized score is
calculated as the sum of the monotonically increas-
ing parts of the scoring function

− log
(
p(y | x)

)
+ oap(y, x)

This pruning may affect the output by removing a
hypothesis with a poor early score that could have
improved later. To gain a speed-up, it is neces-
sary to prune active hypotheses: limiting pruning
to completed hypotheses cannot reduce the num-
ber of hypotheses in early stages, and thus cannot
result in early clearing of the beam.

Completed hypotheses are moved from the
beam to a separate heap. This clears out room in
the beam for active hypotheses, but also means that
the pruning of active hypotheses becomes essential
for early stopping of the beam search.

The third type of pruning is applied to the
heap of completed hypotheses based on normal-
ized score, to only keep n best hypotheses. This
pruning conserves memory and does not affect the
ordering of the results.

4 Data

Our system participates in the constrained condi-
tion of the WMT shared task. As training data,
we used the Europarl-v8, Rapid and Wikititles cor-
pora, extended with backtranslated monolingual
data, resulting in 6 091 184 parallel sentence pairs
after cleaning. The backtranslated sentences were
from the news.2014.fi corpus, translated with a PB-
SMT model, trained with WMT16 constrained set-
tings. Based on initial experiments we decided to
use the full backtranslated set, for a ratio of ca 60%
backtranslated to 40% parallel data, instead of sub-
sampling to balance the ratio.
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newstest2016AB newstest2017

Configuration chrF-1 chrF-2 BLEU chrF-1 chrF-2 BLEU TER

Hybrid decoder with MTL, ensemble of 4 56.79 55.60 21.46 57.30 55.96 20.28 .673
+ repetition removal 57.07 55.59 21.55 57.57 55.92 20.31 –

FlatCat subword decoder, ensemble of 4 55.77 55.41 20.01 54.10 53.98 17.15 .750

Hybrid decoder with MTL, single model 54.69 53.43 18.60 55.17 53.87 17.84 –

Table 1: Results of automatic evaluation. BLEU and chrF scores are percentages. TER from
http://matrix.statmt.org/matrix/systems_list/1871?metric_id=2 .

newstest2016AB

Configuration chrF-1 chrF-2 BLEU

Hybrid decoder with MTL 56.79 55.60 21.46

No morphological tags 55.97 55.20 19.83
No log frequency 55.49 54.26 19.47
No clustered lemma 55.23 53.65 19.37
No PoS-tags 55.05 53.73 19.29

No multi-task learning 54.91 53.48 19.43

No character attention
& name segmentation 52.12 50.80 17.16

No length penalty 56.68 55.52 21.35
No overattending penalty 56.68 55.53 21.33
No coverage penalty 56.43 54.93 20.97
No penalties 55.90 54.21 20.45

Table 2: Results of ablation experiments. All runs
are ensembles of 4, to reduce variability.

Data preprocessing consists of filtering too long
sentences, normalizing misencoded data, normal-
izing punctuation, deduplication, tokenization, sta-
tistical truecasing, filtering of untranslated sen-
tences, and character segmentation of names on the
source side.

Segmenting names into characters, when com-
bined with attention on the character level, al-
lows copying or transliteration on a character-to-
character basis. It is applied using a rough heuris-
tic: we segment any token longer than one char-
acter beginning with an upper case letter or digit.
All segmented characters are marked using re-
served symbols. The first and last characters of the
sequence have distinct symbols separating them
from word-internal characters.

The filtering of untranslated sentences was also
performed using a rough heuristic, by filtering
any sentences containing certain common En-
glish contractions and clitics that do not occur in
Finnish. The target side training data, especially
Europarl, contains hundreds of sentences with En-

glish phrases. A typical reason is discussions on
the wording of English-language documents being
drafted. The filtering was an attempt to alleviate a
failure mode in which the system would instead of
translating attempt (and fail) to output the English
source.

A parallel corpus augmented with gold-standard
labels for MTL is not available. We tag the target
side of the parallel corpus using the statistical tag-
ger FinnPos (Silfverberg et al., 2016). The result-
ing labels are noisy, but nonetheless provide super-
vision for the morphological analysis task.

We postprocess the output of FinnPos. The mor-
pheme tag sequence is split, and tags are grouped
by type. FinnPos lemmas are noisy, containing
many remaining affixes and other mislemmatiza-
tions. We collapse numbers into a single num-
ber symbol, remove special characters, and cluster
the remaining lemmas into 10 000 clusters with
word2vec (Mikolov et al., 2013).

5 Training details

We use the following parameters for the network:
weight of auxiliary task between 0.001 and 0.75,
64 dimensional character embeddings, 256 dimen-
sional word embeddings, 128 dimensional aux em-
beddings, 2*256 dimensional encoder state, 1024
dimensional word decoder state, 1024 dimensional
character decoder state, 256 dimensional attention,
everything except 25k most frequent source words
embedded by character level encoder, 50k most
frequent target words output by word level de-
coder, 10k overlap between word level and char-
acter level vocabularies during training.

For training, we use Adam with initial learning
rate 0.001 and gradient norm clipped to 5.0.

The systems have been tuned towards
characterF-1.0 (Popovic, 2015, 2016). We
optimize the beam search parameters, using a grid
search. The optimal parameters were α 0.012,
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β 0.3, γ 0.2, λ 3, pruning margin 1.4, and weight
0.8 for the character-level cost.

We use an ensemble procedure, in which the
combined prediction is computed as the mean af-
ter the softmax layer of the predictions of 4 models.
The primary system uses systems from 4 runs with
different weights for the auxiliary task. The sys-
tems trained for comparison—a subword system
based on Morfessor FlatCat and the systems in ab-
lation experiments—were ensembled using 4 save
points from a single run.

To include an example of subword NMT, we
also submit our FlatCat system. As preprocess-
ing, the target side has been segmented using Mor-
fessor FlatCat (Grönroos et al., 2014), which was
tuned to produce a subword lexicon of approxi-
mately 60k symbols. Segmenting names into char-
acters is applied in addition to the FlatCat segmen-
tation. The FlatCat segmented system uses WMT
2016 data only, i.e., omits the Rapid corpus.

The FlatCat subword system uses the standard
HNMT decoder. It uses neither the hybrid word-
character decoder nor MTL. We did however use
the improved beam search with penalties.

6 Results

We evaluate the systems using characterF with
β set to 1.0 and 2.0, and cased BLEU using the
mteval-v13a.pl script. We also include Transla-
tion Error Rate (TER) results for the submitted sys-
tems. Our primary system has the best TER score
of all participants.

As the development test set we use both ref-
erence translations of the newstest 2016 set. Ta-
ble 1 shows the submitted ensemble systems, and
the best single model for our primary system. As
our system has a tendency to repeat certain words,
we also evaluate the primary system after a post-
processing step in which consecutive repetitions
are removed.

We perform ablation experiments for all new
components in our system, by removing each of
them separately (non-cumulative effect). Results
are shown in Table 2.

All added components were beneficial. The
largest improvement, +4.3 BLEU, comes from
the attention mechanism in the character decoder,
combined with segmenting names into characters.

Multi-task learning improves BLEU by +2.03.
Not all auxiliary labels are equally important. PoS
tags (+2.17 BLEU) and clustered lemmas (+2.09

BLEU) perform above average, and removing ei-
ther of them yields worse BLEU than not using
MTL at all. The results of both characterF mea-
sures differ in this, ranking not using MTL as
worse than all the partial MTL variants.

The overattending penalty to the beam search
gives a much more modest gain of +0.13 BLEU.
The coverage penalty is the most important of the
beam search penalties. In total, the beam search
heuristics yield an improvement of +1.01 BLEU.

In the human evaluation, our primary system
was ranked in the second of five clusters (tied 3rd

to 5th place).

7 Discussion

All our added components improved the transla-
tion quality.

The largest improvement comes from the modi-
fications intended to enable character-to-character
copying: segmenting names into characters and
character-level attention. However, the simple
heuristic used for selecting words to segment can
make translation more difficult in some cases, e.g.
the names of institutions are typically capitalized,
but translated on a term level. Replacing the heuris-
tic with named-entity recognition or other more ad-
vanced methods is left for future work.

A common type of error made by our system
is overtranslation through repetition. A possible
explanation for the effect is the way that the lev-
els of the hybrid word-character decoder are con-
nected. There is no connection from the character
level back to the word level. The surface forms
generated by the character-level decoder are condi-
tionally independent given the word-level hidden
states, which can be similar to the states at adjacent
time steps. The word-level decoder must decide on
the number of words in an expression, which is a
difficult task if the proportion of <UNK> tokens
becomes large. The overattending penalty is only
partially successful at reducing the repetition, and
increasing the penalty weight deteriorates overall
performance before eliminating the problem.

8 Conclusion

Our results show that translation into a morpho-
logically complex language can be improved us-
ing word-level labels from morphological analysis
combined with a hybrid word-character decoder.
Adding an attention mechanism to the character de-
coder yields a large quality improvement.
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Abstract

This paper describes the MeMAD project
entry to the WMT Multimodal Machine
Translation Shared Task.
We propose adapting the Transformer neu-
ral machine translation (NMT) architec-
ture to a multi-modal setting. In this pa-
per, we also describe the preliminary exper-
iments with text-only translation systems
leading us up to this choice.
We have the top scoring system for both
English-to-German and English-to-French,
according to the automatic metrics for
flickr18.
Our experiments show that the effect of
the visual features in our system is small.
Our largest gains come from the quality of
the underlying text-only NMT system. We
find that appropriate use of additional data
is effective.

1 Introduction
In multi-modal translation, the task is to trans-
late from a source sentence and the image
that it describes, into a target sentence in
another language. As both automatic image
captioning systems and crowd captioning ef-
forts tend to mainly yield descriptions in En-
glish, multi-modal translation can be useful
for generating descriptions of images for lan-
guages other than English. In the MeMAD
project1, multi-modal translation is of inter-
est for creating textual versions or descrip-
tions of audio-visual content. Conversion to
text enables both indexing for multi-lingual
image and video search, and increased access

1https://www.memad.eu/

Data set images en de fr sentences
Multi30k ✓ ✓ ✓ ✓ 29k
MS-COCO ✓ ✓ + + 616k
OpenSubtitles ✓ ✓ ✓ 23M/42M

1M, 3M, and 6M subsets used.

Table 1: Summary of data set sizes. ✓means at-
tribute is present in original data. + means data
set augmented in this work.

to the audio-visual materials for visually im-
paired users.

We adapt2 the Transformer (Vaswani et al.,
2017) architecture to use global image fea-
tures extracted from Detectron, a pre-trained
object detection and localization neural net-
work. We use two additional training corpora:
MS-COCO (Lin et al., 2014) and OpenSub-
titles2018 (Tiedemann, 2009). MS-COCO is
multi-modal, but not multi-lingual. We ex-
tended it to a synthetic multi-modal and multi-
lingual training set. OpenSubtitles is multi-
lingual, but does not include associated im-
ages, and was used as text-only training data.
This places our entry in the unconstrained cat-
egory of the WMT shared task. Details on the
architecture used in this work can be found in
Section 4.1. Further details on the synthetic
data are presented in Section 2. Data sets are
summarized in Table 1.

2 Experiment 1: Optimizing
Text-Based Machine Translation

Our first aim was to select the text-based MT
system to base our multi-modal extensions on.

2Our fork available from https://github.com/
Waino/OpenNMT-py/tree/develop_mmod
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en-fr flickr16 flickr17 mscoco17
multi30k 61.4 54.0 43.1

+subsfull 53.7 48.9 47.0
+domain-tuned 66.1 59.7 51.7

+ensemble-of-3 66.5 60.2 51.6

en-de flickr16 flickr17 mscoco17
multi30k 38.9 32.0 27.7

+subsfull 41.3 34.1 31.3
+domain-tuned 43.3 38.4 35.0

+ensemble-of-3 43.9 39.6 37.0

Table 2: Adding subtitle data and domain tuning
for image caption translation (BLEU% scores). All
results with Marian Amun.

We tried a wide range of models, but only in-
clude results with the two strongest systems:
Marian NMT with the amun model (Junczys-
Dowmunt et al., 2018), and OpenNMT (Klein
et al., 2017) with the Transformer model.

We also studied the effect of additional train-
ing data. Our initial experiments showed that
movie subtitles and their translations work
rather well to augment the given training data.
Therefore, we included parallel subtitles from
the OpenSubtitles2018 corpus to train bet-
ter text-only MT models. For these experi-
ments, we apply the Marian amun model, an
attentional encoder-decoder model with bidi-
rectional LSTM’s on the encoder side. In our
first series of experiments, we observed that
domain-tuning is very important when using
Marian. The domain-tuning was accomplished
by a second training step on in-domain data af-
ter training the model on the entire data set.
Table 2 shows the scores on development data.
We also tried decoding with an ensemble of
three independent runs, which also pushed the
performance a bit.

Furthermore, we tried to artificially increase
the amount of in-domain data by translating
existing English image captions to German
and French. For this purpose, we used the
large MS-COCO data set with its 100,000 im-
ages that have five image captions each. We
used our best multidomain model (see Table 2)
to translate all of those captions and used
them as additional training data. This proce-
dure also transfers the knowledge learned by
the multidomain model into the caption trans-
lations, which helps us to improve the cover-
age of the system with less out-of-domain data.

en-fr flickr16 flickr17 mscoco17
A subs1MH+MS-COCO 66.3 60.5 52.1
A +domain-tuned 66.8 60.6 52.0
A +labels 67.2 60.4 51.7
T subs1MLM +MS-COCO 66.9 60.3 52.8
T +labels 67.2 60.9 52.7

en-de flickr16 flickr17 mscoco17
A subs1MH+MS-COCO 43.1 39.0 35.1
A +domain-tuned 43.9 39.4 35.8
A +labels 43.2 39.3 34.3
T subs1MLM +MS-COCO 44.4 39.4 35.0
T +labels 44.1 39.8 36.5

Table 3: Using automatically translated image
captions and domain labels (BLEU% scores). A is
short for Amun, T for Transformer.

Hence, we filtered the large collection of trans-
lated movie subtitles to a smaller portion of re-
liable sentence pairs (one million in the exper-
iment we report) and could train on a smaller
data set with better results.

We experimented with two filtering meth-
ods. Initially, we implemented a basic heuris-
tic filter (subsH), and later we improved on
this with a language model filter (subsLM ).
Both procedures consider each sentence pair,
assign it a quality score, and then select the
highest scoring 1, 3, or 6 million pairs, discard-
ing the rest. The subsH method counts termi-
nal punctuation (‘.’, ‘...’, ‘?’, ‘!’) in the source
and target sentences, initializing the score as
the negative of the absolute value of the differ-
ence between these counts. Afterwards, it fur-
ther decrements the score by 1 for each occur-
rence of terminal punctuation beyond the first
in each of the sentences. The subsLM method
first preprocesses the data by filtering samples
by length and ratio of lengths, applying a rule-
based noise filter, removing all characters not
present in the Multi30k set, and deduplicating
samples. Afterwards, target sentences in the
remaining pairs are scored using a character-
based deep LSTM language model trained on
the Multi30k data. Both selection procedures
are intended for noise filtering, and subsLM

additionally acts as domain adaptation. Ta-
ble 3 lists the scores we obtained on develop-
ment data.

To make a distinction between automati-
cally translated captions, subtitle translations
and human-translated image captions, we also
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introduced domain labels that we added as
special tokens to the beginning of the input
sequence. In this way, the model can use ex-
plicit information about the domain when de-
ciding how to translate given input. However,
the effect of such labels is not consistent be-
tween systems. For Marian amun, the effect
is negligible as we can see in Table 3. For the
Transformer, domain labels had little effect on
BLEU but were clearly beneficial according to
chrF-1.0.

2.1 Preprocessing of textual data
The final preprocessing pipeline for the tex-
tual data consisted of lowercasing, tokeniz-
ing using Moses, fixing double-encoded enti-
ties and other encoding problems, and normal-
izing punctuation. For the OpenSubtitles data
we additionally used the subsLM subset selec-
tion.

Subword decoding has become popular in
NMT. Careful choice of translation units is
especially important as one of the target lan-
guages of our system is German, a morpho-
logically rich language. We trained a shared
50k subword vocabulary using Byte Pair En-
coding (BPE) (Sennrich et al., 2015). To pro-
duce a balanced multi-lingual segmentation,
the following procedure was used: First, word
counts were calculated individually for English
and each of the 3 target languages Czech3,
French and German. The counts were nor-
malized to equalize the sum of the counts for
each language. This avoided imbalance in the
amount of data skewing the segmentation in
favor of some language. Segmentation bound-
aries around hyphens were forced, overriding
the BPE.

Multi-lingual translation with target-
language tag was done following Johnson et al.
(2016). A special token, e.g. <TO_DE>
to mark German as the target language,
was prefixed to each paired English source
sentence.

3 Experiment 2: Adding Automatic
Image Captions

Our first attempt to add multi-modal infor-
mation to the translation model includes the

3Czech was later dropped as a target language due
to time constraints.

en-fr flickr16 flickr17 mscoco17
multi30k 61.4 54.0 43.1

+autocap (dual attn.) 60.9 52.9 43.3
+autocap 1 (concat) 61.7 53.7 43.9
+autocap 1-5 (concat) 62.2 54.4 44.1

en-de flickr16 flickr17 mscoco17
multi30k 38.9 32.0 27.7

+autocap (dual attn.) 37.8 30.2 27.0
+autocap 1 (concat) 39.7 32.2 28.8
+autocap 1-5 (concat) 39.9 32.0 28.7

Table 4: Adding automatic image captions (only
the best one or all 5). The table shows BLEU
scores in %. All results with Marian Amun.

incorporation of automatically created image
captions in a purely text-based translation en-
gine. For this, we generated five English cap-
tions for each of the images in the provided
training and test data. This was done by
using our in-house captioning system (Shetty
et al., 2018). The image captioning system
uses a 2-layer LSTM with residual connections
to generate captions based on scene context
and object location descriptors, in addition to
standard CNN-based features. The model was
trained with the MS-COCO training data and
used to be state of the art in the COCO leader-
board4 in Spring 2016. The beam search size
was set to five.

We tried two models for the integration of
those captions: (1) a dual attention multi-
source model that adds another input se-
quence with its own decoder attention and (2)
a concatenation model that adds auto captions
at the end of the original input string sepa-
rated by a special token. In the second model,
attention takes care of learning how to use the
additional information and previous work has
shown that this, indeed, is possible (Niehues
et al., 2016; Östling et al., 2017). For both
models, we applied Marian NMT that already
includes a working implementation of dual at-
tention translations. Table 4 summarizes the
scores on the three development test sets for
English-French and English-German.

We can see that the dual attention model
does not work at all and the scores slightly
drop. The concatenation approach works bet-
ter probably because the common attention

4https://competitions.codalab.org/
competitions/3221
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model learns interactions between the different
types of input. However, the improvements
are small if any and the model basically learns
to ignore the auto captions, which are often
very different from the original input. The
attention pattern in the example of Figure 1
shows one of the very rare cases where we ob-
serve at least some attention to the automatic
captions.

Figure 1: Attention layer visualization for an ex-
ample where at least one of the attention weights
for the last part of the sentence, which corresponds
to the automatically generated captions, obtains a
value above 0.3

4 Experiment 3: Multi-modal
Transformer

One benefit of NMT, in addition to its strong
performance, is its flexibility in enabling differ-
ent information sources to be merged. Differ-
ent strategies to include image features both
on the encoder and decoder side have been
explored. We are inspired by the recent suc-
cess of the Transformer architecture to adapt
some of these strategies for use with the Trans-
former.

Recurrent neural networks start their pro-
cessing from some initial hidden state. Nor-
mally, a zero vector or a learned parameter
vector is used, but the initial hidden state is
also a natural location to introduce additional
context e.g. from other modalities. Initializing
can be applied in either the encoder (IMGE) or

decoder (IMGD) (Calixto et al., 2017). These
approaches are not directly applicable to the
Transformer, as it is not a recurrent model,
and lacks a comparable initial hidden state.

Double attention is another popular
choice, used by e.g. Caglayan et al. (2017).
In this approach, two attention mechanisms
are used, one for each modality. The atten-
tions can be separate or hierarchical. While
it would be possible to use double attention
with the Transformer, we did not explore it
in this work. The multiple multi-head at-
tention mechanisms in the Transformer leave
open many challenges in how this integration
would be done.

Multi-task learning has also been used,
e.g. in the Imagination model (Elliott and
Kádár, 2017), where the auxiliary task consists
of reconstructing the visual features from the
source encoding. Imagination could also have
been used with the Transformer, but we did
not explore it in this work.

The source sequence itself is also a pos-
sible location for including the visual informa-
tion. In the IMGW approach, the visual fea-
tures are encoded as a pseudo-word embedding
concatenated to the word embeddings of the
source sentence. When the encoder is a bidi-
rectional recurrent network, as in Calixto et al.
(2017), it is beneficial to add the pseudo-word
both at the beginning and the end to make
it available for both encoder directions. This
is unnecessary in the Transformer, as it has
equal access to all parts of the source in the
deeper layers of the encoder. Therefore, we
add the pseudo-word only to the beginning of
the sequence. We use an affine projection of
the image features V ∈ R80 into a pseudo-word
embedding xI ∈ R512

xI = Wsrc · V + bI .

In the LIUM trg-mul (Caglayan et al., 2017),
the target embeddings and visual features
are interacted through elementwise multiplica-
tion.

y′
j = yj ⊙ tanh(W dec

mul · V )

Our initial gating approach resembles trg-mul.

4.1 Architecture
The baseline NMT for this experiment is
the OpenNMT implementation of the Trans-
former. It is an encoder-decoder NMT system
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using the Transformer architecture (Vaswani
et al., 2017) for both the encoder and de-
coder side. The Transformer is a deep,
non-recurrent network for processing variable-
length sequences. A Transformer is a stack
of layers, consisting of two types of sub-layer:
multi-head (MH) attention (Att) sub-layers
and feed-forward (FF) sub-layers:

Att(Q, K, V ) = softmax(
QKT

√
dk

)V

ai = Att(QWQ
i ,KWK

i , V W V
i )

MH(Q, K, V ) = [a1; . . . ; ah]WO

FF(x) = max(0, xW1 + b1)W2 + b2

(1)

where Q is the input query, K is the key, and
V the attended values. Each sub-layer is indi-
vidually wrapped in a residual connection and
layer normalization.

When used in translation, Transformer lay-
ers are stacked into an encoder-decoder struc-
ture. In the encoder, the layer consists of a
self-attention sub-layer followed by a FF sub-
layer. In self-attention, the output of the pre-
vious layer is used as queries, keys and values
Q = K = V . In the decoder, a third context
attention sub-layer is inserted between the self-
attention and the FF. In context attention, Q
is again the output of the previous layer, but
K = V is the output of the encoder stack. The
decoder self-attention is also masked to pre-
vent access to future information. Sinusoidal
position encoding makes word order informa-
tion available.

Decoder gate. Our first approach is in-
spired by trg-mul. A gating layer is intro-
duced to modify the pre-softmax prediction
distribution. This allows visual features to di-
rectly suppress a part of the output vocabu-
lary. The probability of correctly translating a
source word with visually resolvable ambiguity
can be increased by suppressing the unwanted
choices.

At each timestep the decoder output sj is
projected to an unnormalized distribution over
the target vocabulary.

yj = W · sj + b

Before normalizing the distribution using a

en-fr flickr16 flickr17 mscoco17
IMGW 68.30 62.45 52.86
enc-gate 68.01 61.38 53.40
dec-gate 67.99 61.53 52.38
enc-gate + dec-gate 68.58 62.14 52.98

en-de flickr16 flickr17 mscoco17
IMGW 45.09 40.81 36.94
enc-gate 44.75 41.44 37.76
dec-gate 45.21 40.79 36.47
enc-gate + dec-gate 44.91 41.06 37.40

Table 5: Comparison of strategies for in-
tegrating visual information (BLEU% scores).
All results using Transformer, Multi30k+MS-
COCO+subs3MLM , Detectron mask surface, and
domain labeling.

softmax layer, a gating layer can be added.

g = σ(W dec
gate · V + bdec

gate)

y′
j = yj ⊙ g (2)

Preliminary experiments showed that gating
based on only the visual features did not work.
Suppressing the same subword units during
the entire decoding of the sentence was too
disruptive. We addressed this by using the de-
coder hidden state as additional input to con-
trol the gate. This causes the vocabulary sup-
pression to be time dependent.

gj = σ(Udec
gate · sj + W dec

gate · V + bdec
gate)

(3)

Encoder gate. The same gating proce-
dure can also be applied to the output of the
encoder. When using the encoder gate, the
encoded source sentence is disambiguated, in-
stead of suppressing part of the output vocab-
ulary.

gi = σ(U enc
gate · hi + W enc

gate · V + benc
gate)

h′
i = hi ⊙ gi (4)

The gate biases bdec
gate and benc

gate should be
initialized to positive values, to start training
with the gates opened. We also tried combin-
ing both forms of gating.

4.2 Visual feature selection
Image feature selection was performed using
the LIUM-CVC translation system (Caglayan
et al., 2017) training on the WMT18 training
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en-fr flickr16 flickr17 mscoco17
subs3MLM detectron 68.30 62.45 52.86

+ensemble-of-3 68.72 62.70 53.06
−visual features 68.74 62.71 53.14

−MS-COCO 67.13 61.17 53.34
−multi-lingual 68.21 61.99 52.40

subs6MLM detectron 68.29 61.73 53.05
subs3MLM gn2048 67.74 61.78 52.76
subs3MLM text-only 67.72 61.75 53.02

en-de flickr16 flickr17 mscoco17
subs3MLM detectron 45.09 40.81 36.94

+ensemble-of-3 45.52 41.84 37.49
−visual features 45.59 41.75 37.43

−MS-COCO 45.11 40.52 36.47
−multi-lingual 44.95 40.09 35.28

subs6MLM detectron 45.50 41.01 36.81
subs3MLM gn2048 45.38 40.07 36.82
subs3MLM text-only 44.87 41.27 36.59

+multi-modal finetune 44.56 41.61 36.93

Table 6: Ablation experiments (BLEU% scores).
The row subs3MLM detectron shows our best sin-
gle model. Individual components or data choices
are varied one by one. + stands for adding a com-
ponent, and − for removing a component or data
set. Multiple modifications are indicated by in-
creasing the indentation.

data, and evaluating on the flickr16, flickr17
and mscoco17 data sets. This setup is differ-
ent from our final NMT architecture as the vi-
sual feature selection stage was performed at
an earlier phase of our experiments. However,
the LIUM-CVC setup without training set ex-
pansion was also faster to train which enabled
a more extensive feature selection process.

We experimented with a set of state-of-the-
art visual features, described below.

CNN-based features are 2048-
dimensional feature vectors produced by
applying reverse spatial pyramid pooling on
features extracted from the 5th Inception mod-
ule of the pre-trained GoogLeNet (Szegedy
et al., 2015). For a more detailed description,
see (Shetty et al., 2018). These features are
referred to as gn2048 in Table 6.

Scene-type features are 397-dimensional
feature vectors representing the association
score of an image to each of the scene types
in SUN397 (Xiao et al., 2010). Each associ-
ation score is determined by a separate Ra-
dial Basis Function Support Vector Machine
(RBF-SVM) classifier trained from pre-trained
GoogLeNet CNN features (Shetty et al., 2018).

Action-type features are 40-dimensional

feature vectors created with RBF-SVM classi-
fiers similarly to the scene-type features, but
using the Stanford 40 Actions dataset (Yao
et al., 2011) for training the classifiers. Pre-
trained GoogLeNet CNN features (Szegedy
et al., 2015) were again used as the first-stage
visual descriptors.

Object-type and location features are
generated using the Detectron software5 which
implements Mask R-CNN (He et al., 2017)
with ResNeXt-152 (Xie et al., 2017) features.
Mask R-CNN is an extension of Faster R-CNN
object detection and localization (Ren et al.,
2015) that also generates a segmentation mask
for each of the detected objects. We generated
an 80-dimensional mask surface feature vector
by expressing the image surface area covered
by each of the MS-COCO classes based on the
detected masks.

We found that the Detectron mask surface
resulted in the best BLEU scores in all eval-
uation data sets for improving the German
translations. Only for mscoco17 the results
could be slightly improved with a fusion of
mask surface and the SUN 397 scene-type fea-
ture. For French, the results were more var-
ied, but we focused on improving the German
translation results as those were poorer over-
all. We experimented with different ways of
introducing the image features into the trans-
lation model implemented in LIUM-CVC, and
found as in (Caglayan et al., 2017), that trg-
mul worked best overall.

Later we learned that the mscoco17 test set
has some overlap with the COCO 2017 train-
ing set, which was used to train the Detec-
tron models. Thus, the results on that test
set may not be entirely reliable. However, we
still feel confident in our conclusions as they
are also confirmed by the flickr16 and flickr17
test sets.

4.3 Training
We use the following parameters for the net-
work:6 6 Transformer layers in both encoder
and decoder, 512-dimensional word embed-
dings and hidden states, dropout 0.1, batch

5https://github.com/facebookresearch/
Detectron

6Parameters were chosen following the OpenNMT
FAQ http://opennmt.net/OpenNMT-py/FAQ.html#
how-do-i-use-the-transformer-model
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Figure 2: Image 117 was translated correctly as
feminine “eine besitzerin steht still und ihr brauner
hund rennt auf sie zu .” when not using the image
features, but as masculine “ein besitzer …” when
using them. The English text contains the word
“her”. The person in the image has short hair and
is wearing pants.

size 4096 tokens, label smoothing 0.1, Adam
with initial learning rate 2 and β2 0.998.

For decoding, we use an ensemble procedure,
in which the predictions of 3 independently
trained models are combined by averaging af-
ter the softmax layer to compute combined
prediction.

We evaluate the systems using uncased
BLEU using multibleu. During tuning, we also
used characterF (Popovic, 2015) with β set to
1.0.

There are no images paired with the sen-
tences in OpenSubtitles. When using Open-
Subtitles in training multi-modal models, we
feed in the mean vector of all visual features in
the training data as a dummy visual feature.

4.4 Results
Based on the previous experiments, we chose
the Transformer architecture, Multi30k+MS-
COCO+subs3MLM data sets, Detectron mask
surface visual features, and domain labeling.

Table 5 shows the BLEU scores for this con-
figuration with different ways of integrating
the visual features. The results are inconclu-
sive. The ranking according to chrF-1.0 was
not any clearer. Considering the results as a
whole and the simplicity of the method, we
chose IMGW going forward.

Table 6 shows results of ablation experi-
ments removing or modifying one component

or data choice at a time, and results when us-
ing ensemble decoding. Using ensemble decod-
ing gave a consistent but small improvement.
Multi-lingual models were clearly better than
mono-lingual models. For French, 6M sen-
tences of subtitle data gave worse results than
3M.

We experimented with adding multi-
modality to a pre-trained text-only system
using a fine tuning approach. In the fine
tuning phase, a dec-gate gating layer was
added to the network. The parameters of the
main network were frozen, allowing only the
added gating layer to be trained. Despite the
freezing, the network was still able to unlearn
most of the benefits of the additional text-only
data. It appears that the output vocabulary
was reduced back towards the vocabulary
seen in the multi-modal training set. When
the experiment was repeated so that the fine-
tuning phase included the text-only data, the
performance returned to approximately the
same level as without tuning (+multi-modal
finetune row in Table 6).

To explore the effect of the visual features
on the translation of our final model, we per-
formed an experiment where we retranslated
using the ensemble while “blinding” the model.
Instead of feeding in the actual visual features
for the sentence, we used the mean vector of
all visual features in the training data. The
results are marked -visual features in Table 6.
The resulting differences in the translated sen-
tences were small, and mostly consisted of mi-
nor variations in word order. BLEU scores for
French were surprisingly slightly improved by
this procedure. We did not find clear examples
of successful disambiguation. Figure 2 shows
one example of a detrimental use of visual fea-
tures.

It is possible that adding to the training
data forward translations of MS-COCO cap-
tions from a text-only translation system intro-
duced a biasing effect. If there is translational
ambiguity that should be resolved using the
image, the text-only system will not be able
to resolve it correctly, instead likely yielding
the word that is most frequent in that textual
context. Using such data for training a multi-
modal system might bias it towards ignoring
the image.
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On this year’s flickr18 test set, our system
scores 38.54 BLEU for English-to-German and
44.11 BLEU for English-to-French.

5 Conclusions

Although we saw an improvement from in-
corporating multi-modal information, the im-
provement is modest. The largest differences
in quality between the systems we experi-
mented with can be attributed to the quality
of the underlying text-only NMT system.

We found the amount of in-domain training
data and multi-modal training data to be of
great importance. The synthetic MS-COCO
data was still beneficial, despite being forward
translated, and the visual features being over-
confident due to being extracted from a part
of the image classifier training data.

Even after expansion with synthetic data,
the available multi-modal data is dwarfed by
the amount of text-only data. We found that
movie subtitles worked well for this purpose.
When adding text-only data, domain adapta-
tion was important, and increasing the size of
the selection met with diminishing returns.

Current methods do not fully address the
problem of how to efficiently learn from both
large text-only data and small multi-modal
data simultaneously. We experimented with
a fine tuning approach to this problem, with-
out success.

Although the effect of the multi-modal in-
formation was modest, our system still had
the highest performance of the task partici-
pants for the English-to-German and English-
to-French language pairs, with absolute differ-
ences of +6.0 and +3.5 BLEU%, respectively.
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Abstract

This paper describes the LeBLEU evalu-
ation score for machine translation, sub-
mitted to WMT15 Metrics Shared Task.
LeBLEU extends the popular BLEU score
to consider fuzzy matches between word
n-grams. While there are several variants
of BLEU that allow to non-exact matches
between words either by character-based
distance measures or morphological pre-
processing, none of them use fuzzy com-
parison between longer chunks of text.
The results on WMT data sets show that
fuzzy n-gram matching improves correla-
tions to human evaluation especially for
highly compounding languages.

1 Introduction

The quality of machine translation has improved
to the level that the translation hypotheses are
useful starting points for human translators for
almost any language pair. In the post-editing
task, the ultimate way to evaluate the machine
translation quality is to measure the editing time.
Editing times are naturally related to the num-
ber and types of the edits—and thus the number
of keystrokes (Frederking and Nirenburg, 1994)—
the post-editor needs to get the final translation
from the hypothesis. If we compare the raw trans-
lation hypothesis and its post-edited version, an
appropriate edit distance measure should correlate
to the edit time. However, implementing such a
measure is far from trivial.

In automatic speech recognition, common eval-
uation measures are Word Error Rate (WER) and
Letter Error Rate (LER) that are based on the Lev-
enshtein edit distance (Levenshtein, 1966). LER is
more reasonable measure than WER for morpho-
logically complex languages, in which the same
word can occur in many inflected and derived

forms (Creutz et al., 2007). However, both give
too high penalty for the variations in word order-
ing, which are frequent in translations. Even in
English, there are often at least two grammatically
correct orders for a complex sentence. For lan-
guages in which the grammatical roles are marked
by morphology and not the word order, there may
be many more options.

An edit distance measure suitable for machine
translation would require move operations. How-
ever, such measures are computationally very ex-
pensive: finding the minimum edit distance with
moves is NP-hard (Shapira and Storer, 2002),
making it cumbersome for evaluation and unsuit-
able for automatic tuning of the translation mod-
els. Possible solutions include limiting the move
operations or searching only for an approximate
solution. For example, Translation Edit Rate
(TER) by Snover et al. (2006) uses a shift oper-
ation that moves a contiguous sequence of words
to another location, as well as a greedy search al-
gorithm to find the minimum distance. Stanford
Probabilistic Edit Distance Evaluation (SPEDE)
by Wang and Manning (2012) applies a proba-
bilistic push-down automaton that captures non-
nested, limited distance word swapping.

A different approach to avoid the requirement
of exactly same word order in the hypothesis and
reference translations is to concentrate on compar-
ing only small parts of the full texts. For exam-
ple, the popular BLEU metric by Papineni et al.
(2002) considers only local ordering of words. To
be precise, it calculates the geometric mean pre-
cision of the n-grams of length between one and
four. As high precision is easy to obtain by provid-
ing a very short hypothesis translation, hypotheses
that are shorter than the reference are penalized by
a brevity penalty.

BLEU, TER and many other word-based meth-
ods assume that a single word (or n-gram) is ei-
ther correct or incorrect, nothing in between. This
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is problematic for inflected or derived words (e.g.
“translate” and “translated” are considered two
different words) as well as compound words (e.g.
“salt-and-pepper” vs. “salt and pepper”). This is
a minor issue for English, but it makes the evalua-
tion unreliable for many other languages. For ex-
ample, in English–German translation, producing
“Arbeits Geberverband” from “employers’ organi-
zation” would give no hits if the reference had the
compound “Arbeitgeberverband”.

A common approach to the problem of inflected
word forms—as well as to the simpler issues of
uppercase letters and punctuation characters—is
preprocessing. For example, METEOR (Baner-
jee and Lavie, 2005; Denkowski and Lavie, 2011)
uses a stemmer. Popović (2011) applies and com-
bines BLEU-style scores based on part-of-speech
(POS) tags as well as morphemes induced by the
unsupervised method by Creutz and Lagus (2005).
Also the AMBER score by Chen and Kuhn (2011)
combines many BLEU variants, and in some vari-
ants, the words are heuristically segmented.

Our approach is to extend the BLEU metric
to work better on morphologically complex lan-
guages without using any language-specific re-
sources. Instead of giving one point for exactly
same n-gram or zero points for any difference, we
include “soft” or “fuzzy” hits for word n-grams
based on letter edit distance. We call the score
LeBLEU; this name can be interpreted either as
“Letter-edit-BLEU” or “Levenshtein-BLEU”. Le-
BLEU has two main parameters, n-gram length
and fuzzy match threshold, that are easy to tune
for different types of languages.1

There are at least three previous approaches that
resemble LeBLEU in that they try not to over-
penalize different word orderings and word forms,
but do not require any preprocessing tools or re-
sources. Denoual and Lepage (2005) simply use
the standard BLEU score on the level of charac-
ters, treating word delimiters as any other charac-
ters. In order to capture long enough sequences of
text, they increase the maximum n-gram length to
18. Compared to word-based BLEU, their method
does not increase the correlations to human evalu-
ation in English.

Homola et al. (2009) propose a score that is a
weighted combination of two measures: an align-
ment score that applies letter edit distances be-

1In contrast, for example the AMBER score by Chen and
Kuhn (2011) includes nearly 20 weight parameters.

tween the word forms and a structural score that
measures the differences in word order. In con-
trast to LeBLEU, it still strongly penalizes errors
in compounding, as the alignment is word-to-word
and fuzzy matches are accepted only if the LER
between a pair of words is lower than 15%.

More recently, Libovický and Pecina (2014)
have proposed “tolerant BLEU”, a variant of
BLEU that similarly to LeBLEU finds fuzzy
matches between hypothesis and reference words.
Instead of Levenshtein edit distance, they apply
a specific affix distance measure that requires an
exact match in the middle of the words. More-
over, they apply a more complex procedure, in
which the words between the hypothesis and refer-
ence are first aligned using the Munkres algorithm.
Then the hypothesis words are replaced by the
matched reference words while applying a penalty
based on the affix distance, and finally standard
BLEU calculations are performed on the modified
hypothesis. Similarly to the method by Homola
et al. (2009), there is no matching between word
n-grams of different lengths.

2 Method

LeBLEU differs from the standard BLEU (Pap-
ineni et al., 2002) in the following aspects (in the
order of decreasing importance):

First, the matching of word n-grams is fuzzy:
for a close match, the hits are increased according
to a similarity score. The similarity score is one
minus letter edit distance normalized by the length
of the longer n-gram in characters. Even though
we use the term “letter edit”, the calculations are
based on all characters, including the spaces be-
tween the words. If the similarity score is lower
than the selected threshold parameter δ, the fuzzy
match is ignored.

In contrast to standard BLEU, there is no need
for lowercasing or even tokenization. For exam-
ple, a punctuation character following a word is
included in the n-gram as a part of the word. Thus,
with a reasonably low threshold parameter, miss-
ing the punctuation character will result only in a
relative small decrease in the score.

Second, to facilitate the matching of compound
words, the hypothesis n-grams are not matched
only to reference n-grams of the same order, but n-
grams of any order between one and 2n, where n
is highest order of hypothesis n-gram considered.

Third, the brevity penalty is not based on the
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number of word tokens but the number of charac-
ters in the data. By this, we try to avoid giving too
much penalty for mistakes in compound words.
Character-based penalty is also one of the penalty
variants in AMBER (Chen and Kuhn, 2011).

Fourth, when calculating mean over the differ-
ent n-gram orders, arithmetic mean is taken in-
stead of geometric mean. That the arithmetic
mean is often a better choice than the geometric
mean has been noted also by Song et al. (2013).

2.1 Algorithm

Our algorithm for calculating the LeBLEU score
consists of four phases: First, the hypothesis n-
grams and their frequencies are collected. Sec-
ond, hypothesis n-grams are matched to the refer-
ence n-grams, collecting the normalized letter-edit
scores. Third, the scores are summed up for each
n-gram order and normalized by the total number
of hypothesis n-grams. Finally, average precision
over n-gram orders is calculated and multiplied by
the brevity penalty.

Only the second phase differs significantly from
calculating the standard BLEU score. It is also
the most time-consuming part of the algorithm, so
we will describe the implemented optimizations in
more detail. We also discuss how further speed-
up can be obtained by sampling the hypothesis n-
grams in the first phase.

2.1.1 Calculating distances between n-grams
As we need to compare all hypothesis n-grams (up
to n) to all reference n-grams (up to 2n), the worst-
case complexity for the number of Levenshtein
calculations is O(n2HR) for hypothesis sentence
of H words, reference sentence of R words and
maximum n-gram order n. We use several strate-
gies to optimize this task without changing the re-
sulting scores.

To calculate the Levenshtein distances, we use a
modified version of python-Levenshtein, a Python
extension module written in C.2 The number of
function calls from Python to C is minimized by
passing in two lists of strings to compare: all ex-
tracted n-grams from the hypothesis and reference.
This strategy results in a large number of compar-
isons, making it attractive to prune comparisons
that will not affect the final score due to the thresh-
old parameter δ.

2Our fork is available from https://github.com/
Waino/python-Levenshtein.

Two lower bounds for Levenshtein distance
were used for pruning. The first lower bound
is given by the difference in lengths of the two
strings: the number of letter edits is at least the ab-
solute difference of the lengths. The second lower
bound is the bag distance (Bartolini et al., 2002),
which uses the difference between character his-
tograms calculated from the compared strings. In
addition to the lower bounds, we use early stop-
ping of the dynamic programming algorithm for
Levenshtein distance, if all possible paths have
grown past the pruning threshold.

For each hypothesis n-gram, the pruning thresh-
old is initially set to δ. As we are looking only
for the m-best matches (where m is the number of
times the hypothesis n-gram occurred in the sen-
tence), we can constraint the threshold whenever
better matches to the reference n-grams are found.
For example, if the two best matches are required,
a third score that is worse than the current second-
best cannot affect the score. Keeping track of the
desired number of best matches can be accom-
plished using for example a heap data structure.
However, most of the n-grams occur only once,
in which case the heap degenerates into a single
item. To simplify the implementation, we adjust
the threshold only in this case.

2.1.2 Sampling of n-grams

Regardless of the optimizations above, the eval-
uation speed may get impractically slow for very
long sentences. In such cases, a suitable approxi-
mation is to estimate the precision for only a sub-
set of the hypothesis n-grams. If the sample size
is limited to L n-grams, the time complexity be-
comes O(LnR). A sensible scheme is to select
n-grams evenly from the hypothesis sentence. In
practice, we exclude or include n-grams starting
from every kth word for a suitable value of k.3

If the gaps are never longer than n − 1 words,
all words in the hypothesis will influence the re-
sult. We set the maximum n-gram sample size L
to 2000. If n = 4, this means that we use all n-
grams if the number of words in the hypothesis
H ≤ 500. Some words in the hypothesis would
be completely discarded only if H > 2000.

3If L/H < 0.5, we set k = bH/Lc and include every
kth word. Otherwise we set k = bH/(H − L)c and exclude
every kth word.
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3 Experiments

We study the proposed evaluation score using the
data sets from the shared tasks of the Workshops
on Statistical Machine Translation (WMT). The
data sets contain human evaluations for different
machine translation systems and system combi-
nation outputs. The translation hypotheses are
ranked both in the level of segments (individual
sentences) and systems. The translation hypothe-
ses and references were used as inputs to the Le-
BLEU score as such: no preprocessing was per-
formed on the texts.

3.1 Parameter tuning

We tuned the two parameters of the evaluation
score on the data sets published from the WMT
2013 and 2014 shared tasks (Macháček and Bo-
jar, 2013; Macháček and Bojar, 2014). We ran a
grid search on the parameters for each language
and level. We tested four values of the maximum
n-gram length n (from 1 to 4) and six values of
the fuzzy match threshold δ (from 0.2 to 0.8 using
step size 0.1).

Our WMT 2015 submission includes two ver-
sions regarding the method parameters: “default”
and “optimized”. For the default submission, we
selected the parameters based on the smallest rank
sum over all languages, data sets (2013/2014) and
levels of evaluation (system/segment). These pa-
rameters, which we set as the default parameters
for our implementation, are n = 4 and δ = 0.4.

For the optimized submission, we took the pa-
rameters with the best average correlation over
WMT 2013 and 2014 data sets for each language
pair and level of evaluation. The results are shown
in Table 1. For the Finnish language that was
not present in the 2013 and 2014 shared tasks, we
took the best parameters for German, another lan-
guage with complex morphology and long com-
pound words.

3.2 Results for the WMT shared tasks

Table 2 shows the results from the WMT 2013,
WMT 2014, and WMT 2015. Topline for system-
level data of WMT 2013 is not included due to
the use of Spearman’s rank correlation instead of
Pearson’s product-moment correlation. Segment-
level results of WMT 2013 are dominated by sin-
gle submission, SIMPBLEU-RECALL by Song et
al. (2013). Considering morphologically com-
plex languages, LeBLEU would have ranked first

segment system

Source Target n δ n δ

English French 4 0.7 4 0.4
English German 3 0.2 4 0.2
English Czech 2 0.3 4 0.3
English Russian 2 0.3 2 0.2
French English 3 0.6 4 0.6
German English 4 0.5 4 0.4
Czech English 4 0.5 4 0.7
Russian English 4 0.5 4 0.3

Table 1: Results of parameter optimization for
each language pair and level of evaluation (seg-
ment or system).

in English–German and second in English–Czech
and English–Russian. For translations to English,
LeBLEU would have ranked in the top five among
the 10 methods.

For WMT 2014 segment-level data, optimized
LeBLEU provides the highest correlations for all
language pairs from English. It also outperforms
all the included methods for English–German and
English–Russian system-level data. For system-
level English–French, it would have ranked 5th.
For system-level English–Czech, the optimized
parameters yielded lower correlation than the de-
fault ones, and neither come close to the topline.
Somewhat surprisingly, LeBLEU provides the top
correlation for system-level German–English and
third best for system-level Czech–English transla-
tions. For other system-level pairs to English, and
all segment-level pairs to English, the correlations
are reasonably high but quite far from the respec-
tive toplines. We can also compare LeBLEU to
two related methods, standard BLEU and AMBER
(Chen and Kuhn, 2011). LeBLEU outperforms
both in almost all tasks already with the default pa-
rameters. The only exception is the system-level
English–Czech task, in which BLEU provided a
slightly higher correlation.

In the WMT 2015 evaluation, LeBLEU pro-
vides quite stable correlations across the differ-
ent language pairs: Segment-level correlations are
between 0.345–0.436 with default parameters and
0.347–0.438 with optimized parameters. System-
level correlations are between 0.850–0.955 with
default parameters and 0.842–0.984 with opti-
mized parameters, except for English–Finnish,
which gets 0.835 with the default parameters and
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WMT 2013 WMT 2014 WMT 2015

Source Target Level def. opt. top def. opt. ref-B ref-A top def. opt. top

English French segment .231 .234 .261 .292 .296 .256 .264 .293 .345 .347 .366
English Finnish segment – – – – – – – – .368 .368 .380
English German segment .247 .260 .254 .273 .273 .191 .227 .268 .398 .399 .398
English Czech segment .167 .168 .192 .342 .349 .290 .302 .344 .406 .410 .446
English Russian segment .230 .233 .245 .446 .449 .381 .397 .440 .404 .404 .439

French English segment .255 .259 .303 .380 .395 .378 .367 .433 .373 .376 .398
Finnish English segment – – – – – – – – .383 .391 .445
German English segment .256 .262 .318 .324 .320 .271 .313 .380 .402 .399 .482
Czech English segment .225 .227 .388 .278 .282 .213 .246 .328 .436 .438 .495
Russian English segment .229 .230 .234 .302 .309 .263 .294 .355 .376 .374 .418

English French system .971 .971 – .947 .947 .937 .928 .960 .933 .933 .964
English Finnish system – – – – – – – – .835 .803 .878
English German system .947 .919 – .451 .531 .216 .241 .357 .850 .868 .879
English Czech system .842 .857 – .973 .964 .976 .972 .988 .953 .952 .977
English Russian system .787 .870 – .926 .941 .915 .926 .941 .896 .908 .970

French English system .948 .956 – .964 .964 .952 .948 .981 .955 .984 .997
Finnish English system – – – – – – – – .900 .900 .977
German English system .933 .933 – .963 .963 .832 .910 .943 .916 .916 .981
Czech English system .960 .946 – .918 .988 .909 .744 .993 .947 .976 .993
Russian English system .836 .855 – .805 .799 .789 .797 .870 .908 .842 .981

Table 2: Performance of LeBLEU in recent WMT metrics shared tasks. Pearson’s correlation coefficients
(system-level data) and average Kendall’s tau correlation coefficients (segment-level data) for LeBLEU
with default parameters (def.), LeBLEU with optimized parameters (opt.), and topline method for the
shared task (top). For WMT 2014 data, also two reference methods are included: BLEU (ref-B) and
AMBER (ref-A).

only 0.803 with the German-optimized parame-
ters. The choice of German-based parameters was
clearly unsuccessful, and the effect of optimiza-
tion for evaluation in Finnish remains to be seen.
On average, optimization based on WMT 2013
and 2014 data sets improved the performance.

Compared to other methods submitted to WMT
2015, LeBLEU outperformed others in segment-
level English–German translation. It also ranked
second in system-level English–German and third
in segment-level English–French. Moreover, even
though unoptimized for the task, it ranked third in
segment-level and fourth in system-level English–
Finnish evaluations.

4 Conclusions

We have described the LeBLEU evaluation score
for machine translation. It is an extension of the
popular BLEU evaluation metric, but much more
suitable for evaluating machine translation to mor-
phologically complex languages. The extension
is conceptually simple and does not require any
language-specific resources. Instead, morpholog-
ical variants and mistakes in compound words
are accepted by using fuzzy matching between

the word n-grams in the hypothesis and reference
translations.

In the WMT15 shared task, LeBLEU provided
high correlations to the human evaluations espe-
cially when translating from English to a mor-
phologically more complex language. In particu-
lar, it outperformed other methods in the segment-
level evaluation of English–German translation.
The performance is equally good for WMT 2013
and 2014 data sets. This is remarkable especially
as the method uses neither rule-based nor data-
driven tools for morphological processing. As
German is a highly compounding language, this
indicates that the mistakes in compound words are
frequently over-penalized by the current evalua-
tion methods.

Implementation for the LeBLEU evaluation
score is available from https://github.
com/Waino/LeBLEU.
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