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Abstract

Many Uralic languages have a rich morphological structure, but lack tools of
morphological analysis needed for efficient language processing. While creating
a high-quality morphological analyzer requires a significant amount of expert
labor, data-driven approaches may provide sufficient quality for many applica-
tions. We study how to create a statistical model for morphological segmentation
of North Sámi language with a large unannotated corpus and a small amount of
human-annotated word forms selected using an active learning approach. For
statistical learning, we use the semi-supervised Morfessor Baseline and FlatCat
methods. Aer annotating 237 words with our active learning setup, we improve
morph boundary recall over 20% with no loss of precision.

is work is licensed under a Creative Commons Aribution–NoDerivatives 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by-nd/4.0/
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1 Introduction
In morphologically rich languages, such as the Uralic languages, the number of ob-
served word forms grows rapidly with increasing corpus size. is vocabulary growth
can be problematic for natural language processing (NLP) applications, because it
causes sparsity in the calculated statistics. us it is essential to model such languages
on a sub-word level, using for example morphological analysis.

Despite the improvement of development tools and increase of computational re-
sources since the introduction of finite-state transducer (FST) based morphological
analyzers in the 1980s [1], the boleneck for the traditional method of building such
analyzers is still the large amounts of manual labor and skill that are required [2].
e strength of such analyzers is the potential to produce output of high quality and
richly informative morphological tags.

Morphological surface segmentation is a relaxed variant of morphological analy-
sis, in which the surface form of a word is divided into segments that correspond to
morphemes. e segments, called morphs, are not mapped onto underlying abstract
morphemes as in FST-based analyzers, but concatenating the sequence of morphs re-
sults directly in the observed word form. Allomorphic variation is le unresolved.

Although unsupervised learning of morphological segmenters does not reach the
detail and accuracy of hand-built analyzers, it has proven useful for many NLP ap-
plications, including speech recognition [3], information retrieval [4], and machine
translation [5]. Unsupervised methods are especially valuable for low-resource lan-
guages, as they do not require any expensive resources produced by human experts.

While hand built morphological analyzers and large annotated corporamay be un-
available due to the expense, a small amount of linguistic expertise is easier to obtain.
Given word forms embedded in sentence contexts, a well-informed native speaker of
a language can mark the prefixes, stems, and suffixes of the words in question. A brief
collection effort of this type will result in a very small set of annotated words.

Small annotated data of this type can be used to augment large unannotated data
by using semi-supervised methods, which are able to learn from such mixed data. As
lile as one hundred manually segmented words have been shown to provide signif-
icant improvements to the quality of the output when comparing to a linguistic gold
standard [6]. Adding more annotated data improves the results, with rapid improve-
ment to one thousand words or beyond.

When gathering annotated training samples for a specific model, active learning
may provide beer results than selecting the samples randomly. In each iteration of
active learning, the current best model, trained with all training samples collected up
to that point, is used in selection of the new samples to annotate for the next iteration.
In this work, we use active learning for morphological segmentation of North Sámi.
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1.1 North Sámi

North Sámi (davvisámegiella) belongs to Finno-Ugrian languages and is related to
Finnish and other Baltic-Finnic languages. It is one of the nine Sámi languages spoken
in the Northern Polar Cap, and spread along Norway, Sweden, Finland and Russia.
e speakers of the Sámi languages do not necessarily understand each other but the
languages form a chain of adjacent groups. North Sámi is the most widely used Sámi
language with around 20 000 speakers, functioning as a lingua franca among the Sámi
speakers and used in text books, children’s books, newspapers, and broadcasts.

Linguistically North Sámi is characterized as an inflected language, with cases,
numbers, persons, tense and mood. e inflectional system has seven cases. It is
accompanied by complicated although regular morphophonological variation. e
inflected forms follow weak and strong grades which concern almost all consonants.
North Sámi is also fusional: a single word form can stand for more than one morpho-
logical category. e nouns have four inflection categories (stems with a vowel or
a consonant, the so-called contracting is-nouns, and alternating u-nouns), while the
verbs have three conjugation categories (gradation, three syllable, two syllable). e
only one syllable verbs are “leat” (to be) and the negation verb. In syntax, the Sámi
has separate dual forms for pronouns and verbs besides singular and plural forms.

1.2 Related work

While unsupervised morphological segmentation has recently been an active topic of
research [7], semi-supervised morphological segmentation has not received as much
aention. One approach is to seed the learning with a small amount of linguistic
knowledge in addition to the unannotated corpus [8]. Some semi-supervised methods
where a part of the training corpus is supplied with correct outputs have also been
presented, including generative [6, 9, 10] and discriminative [11, 12] methods.

Active learning methods have been applied for constructing FST-based analyzers
by eliciting new rules from a userwith linguistic expertise [13, 14]. ese development
efforts are fast for rule-based systems, but still requiremonths of work. ere has been
research effort into FST-based morphology for Sámi languages [15, 16, 17]

North Sámi is the focus of the DigiSami project, which aempts to increase the
digital viability of minor Finno-Ugric languages by technology development, analysis,
data collection (read and conversational speech), and encouragement of community
effort in online content creation [18, 19]. is work directly supports the ultimate
goal of the project, which is to produce tools and technology that would allow Sámi
speech-based applications to be developed. Although North Sámi has various linguis-
tic resources, there are not many related to speech technology.
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2 Methods
As amethod formorphological segmentation ofwords, we useMorfessor. It is a family
of methods for learning morphological segmentations primarily from unannotated
data. e methods are based on a generative probabilistic model which generates the
observed word forms by concatenating morphs. e model parameters θ define a
morph lexicon. e morphmi is considered to be stored in the morph lexicon, if it has
a non-zero probability P (m |θ) given the parameters.

Morfessor utilizes a prior distributionP (θ) over morph lexicons, derived from the
Minimum Description Length principle [20]. e prior favors lexicons that contain
fewer, shorter morphs. e purpose is to balance the size of the lexicon, and the size
of the corpus D when encoded using the lexicon. is balance can be expressed as
finding the following Maximum a Posteriori (MAP) estimate:

θ̂ = argmax
θ

P (θ |D) = argmin
θ

(
− logP (θ)− logP (D |θ)

)
. (1)

In the Morfessor variants used in this work, the lexicon encodes the forms of the
morphs directly as strings: each leer requires a certain number of bits to encode.

2.1 Morfessor Baseline

Morfessor Baseline [21, 22] employs a morph lexicon P (m |θ) that is simply a cate-
gorical distribution over morphs m, in other words a unigram model. e model pa-
rameters θ are optimized utilizing a greedy local search, in which one training word
at a time is reanalyzed and the model parameters updated accordingly.

In order to use the annotations produced in the active learning for trainingMorfes-
sor, we employ the semi-supervised extension toMorfessor Baseline [6]. is involves
replacing the MAP estimate (1) with the optimization

θ̂ = argmin
θ

(
− logP (θ)− logαP (D |θ)− logβP (A |θ

)
, (2)

where D is the unannotated and A the annotated training corpus, α and β are the
weights for the likelihood of the unannotated corpus and annotated corpus, respec-
tively. e hyper-parameters α and β affect the overall amount of segmentation and
the relative importance of using the morphs present in the annotated corpus.

2.2 Morfessor FlatCat

e most recent Morfessor variant is called Morfessor FlatCat [10]. e main differ-
ence betweenMorfessor Baseline andMorfessor FlatCat is the use ofmorph categories
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in the laer. Each morph token is categorized as , , or . Internally
to the algorithm, a  category is used, intended to model frequent sub-
strings that are not morphs but fragments of a morph. Word formation is modeled
using a hidden Markov model (HMM) having morph categories as hidden states and
morphs as observations. HMMmorphotactics were previously used in the Categories-
ML [23] and Categories-MAP [24] variants of Morfessor, but Morfessor FlatCat is the
first method to combine the approach with semi-supervised training.

e benefit of the HMMmorphotactics is increased context-sensitivity, which im-
proves the precision of the segmentation. For example, in English, the model can
prevent spliing a single s, a common suffix, from the beginning of a word. Modeling
ofmorphotactics also improves the segmentation of compoundwords, by allowing the
overall level of segmentation to be increased. e main benefits of semi-supervised
learning are in the modeling of suffixation. [10]

e prior of Morfessor FlatCat is otherwise the same as in Morfessor Baseline, but
it also includes encoding of the right and le perplexity of the morph. e perplexity
measures describe the predictability of the contexts in which the morph occurs. e
perplexities, together with the length of the morph, are used to calculate the emission
probability of a morph conditioned on the morph category, P (m | c).

2.3 Pool-based active learning

Pool-based active learning [25] has been successfully applied in NLP [26]. In pool-
based active learning, the system has access to a pool of unlabeled data A and can
request from the annotator true labels for a certain number of samples in the pool.

A method for choosing which samples to annotate still needs to be defined. A
well suited approach for generative models is to use the model’s estimate of the un-
certainty of the decision associated with a particular sample in order to select the
additional samples to annotate [27]. In the case of morphological segmentation, we
use the uncertainty of a word’s current segmentation in order to assess its value as
an additional annotation. e next word to annotateA(t+1) at time step t is selected
from A based on the uncertainty of the current best segmentation Zi

A(t+1) = argmin
wi∈A

P (Zi |θt)

P (wi |θt)
, (3)

where the likelihood of the current segmentation P (Zi |θt) is given by the Viterbi
algorithm [28] and the likelihood of the word with any segmentation P (wi |θt) is
given by the forward algorithm [29].

5



Corpus Word tokens Word types
Den samiske tekstbanken 17 985 140 691 190
UIT-SME-TTS 42 150 8194

Development set – 100
Evaluation pool – 900
Training pool A – 7194

Table 1: Sizes of the unannotated corpora and the initial division into subsets.

3 Experiments
We used two different text corpora in our experiments. e sizes of the corpora are
shown in Table 1. e larger Den samiske tekstbanken corpus was only used to con-
struct a word list, to use as the unannotated training data. e smaller UIT-SME-TTS
corpus was divided into separate pools from which evaluation and training words
were drawn for annotation. e sentences in which the words occur were also ex-
tracted for use as contexts. To ensure that the evaluation words are unseen, the words
in the evaluation pool were removed from the other subsets.

e use of two corpora enables the release of the annotations with their sentence
contexts, which would have been precluded by the restrictive corpus of the Tekst-
banken corpus. It also demonstrates the effectiveness of the system under the realistic
scenario where a large general-domain word list for the language is available for use,
even though the corpora themselves are restricted by licensing. A similar scenario
would be selection from a specific target domain corpus.

Initially we use Morfessor Baseline, but towards the end of the experiment we
switch the method to Morfessor FlatCat. As prefixes are very rare in North Sámi, and
none were seen in the annotations, we disabled the prefix category.

3.1 Active learning

Our active learning procedure starts from nothing but an unannotated corpus col-
lected for other purposes. An initial model is trained in an unsupervised fashion. e
procedure then applies three components iteratively: (i) selection of newwords to an-
notate using the current model, (ii) elicitation of annotations for the selected words,
and (iii) training of the new segmentation model using all available training data.

For the elicitation step, we developed a web-based annotation interface. A java-
script app using the jery framework was used as a front-end and a RESTful Python
wsgi-app built on the bole framework as a back-end. Screenshots of the annotation
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Figure 1: Screenshots of the annotation interface.

interface are shown in Figure 1. For words in the training pool, the interface shows
the segmentation of the current model as a suggestion to the annotator. Words in the
evaluation pool are shown unsegmented, in order not to bias the annotator.

ere are no efficient on-line training algorithms for Morfessor FlatCat. us we
gather a list of 50 new words to annotate, by ranking the potential words accord-
ing to (3), and re-train once the whole list has been annotated. Re-training includes
hyper-parameter optimization (HPO) for α and β. Due to the very limited amount
of training data, and a lack of previously collected annotated development set, we
initially decided to use 3-fold cross-validation on the annotated training set for HPO.
is initial approach was quickly shown to be flawed, as the values of the hyper-
parameters did not begin to converge aer multiple iterations. is divergence can
be explained by HPO requiring the development set to be an unbiased sample of the
data distribution. A subset biased towards maximally informative words is desired
for use as training words, but using them for HPO introduces an undesired bias.

To remedy this situation, we constructed a development set of 100 randomly se-
lected words with annotations. We then restarted the iterations, now using the de-
velopment set for HPO. In this second approach, when a word that had already been
annotated was reselected for annotation, the old annotation was used, making it un-
necessary to re-elicit from the annotator. e training iterations and the respective
hyper-parameter values are shown in Table 2.

3.2 Annotation details

eannotationswere produced by a single trained linguist, who is not a native speaker
of Sámi. In total 457 randomly selected word types and 346 actively selected word
types were annotated under a time span of 17 days. e total time spent by the anno-
tator was 19 hours (over 30 min breaks omied).
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Hyper-parameters Annotated words Test
Iteration Training α β Dev Train Tot F1

C 0 U Baseline 0.42 – – – 0 .67
C 1 U Baseline 1.3 – – – 49 .68
C 2 S Baseline 2.4 1300 – 98 98 .67
C 3 S Baseline 2.7 800 – 148 148 .66
C 4 S Baseline 3.4 900 – 198 198 .66

D 0 U Baseline 1.1 – 100 – 100 .68
D 1 S Baseline 1.4 800 100 50 150 .69
D 2 S Baseline 1.5 700 100 123 223 .70
D 3 S FlatCat 0.2 1400 100 182 282 .74
D 4 S FlatCat 0.5 2200 100 237 337 .76

Table 2: e model parameters and number of annotations for the active learning
iterations. U and S stand for unsupervised and semi-supervised training, C and D for
seing hyper-parameters by cross-validation and development set, respectively.

Most of the annotated word tokens had an unambiguous segmentation agreeing
with established linguistic interpretation. ese words contain only easily separated
suffixes: markers for case and person, and derivational endings. However, some
words required the annotator to make choices on where to place the boundary.

One challenge was posed by the extensive stem alternation and fusion in Sámi.
To maximize consistency, the segmentation boundary was usually placed so that all
of the morphophonological alternation remains in the stem. Exceptions include the
passive derivational suffix, which is found as variants -ojuvvo- and -juvvo- depending
on the inflectional category and stem type. Another challenge were lexicalized stems.
ese stems appear to end with a derivational suffix, but removal of the suffix does not
yield a morpheme at all, or results in a morpheme with very weak semantic relation
to the lexicalized stem. An example is ráhkadit (make, produce).

3.3 Evaluation

e word segmentations generated by the model are evaluated by comparison with
annotated morph boundaries using boundary precision, boundary recall, and boundary
F1-score [30]. e boundary F1-score equals the harmonic mean of precision (the
percentage of correctly assigned boundaries with respect to all assigned boundaries)
and recall (the percentage of correctly assigned boundaries with respect to the refer-
ence boundaries). Precision and recall are calculated using macro-averages over the
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Figure 2: F1-score for models trained using varying amounts of annotated data. e
labels indicate the iteration number. BL stands for Baseline and FC for FlatCat.

words in the evaluation set. In the case that the word has more than one annotated
segmentation, we take the one that gives the highest score.

We also report the scores for subsets of words consisting of different morph cate-
gory paerns found in the evaluation set. ese categories are words that should not
be segmented (), compound words consisting of exactly two stems (+),
a stem followed by a single suffix (+) and a stem and exactly two suffixes
(++). Only precision is reported for the  paern, as recall is not de-
fined for an empty set of true boundaries.

3.4 Results

Figure 2 shows the improvement of the F1-score as more annotations became avail-
able. Training a Morfessor FlatCat model aer three iterations provided a large boost,
even though the annotated words had so far been selected by Baseline models. In
contrast, the words selected by the FlatCat model (3FC) for annotation did not benefit
the Baseline model (4BL).

Table 3 shows scores for sets of words with different morphological paerns. For
the full test set, we improve morph boundary recall over 20% (relative) with no loss
of precision, when comparing the first model of the second approach (D0) to the last
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STM STM+STM STM+SUF STM+SUF+SUF Full test set
Model Pre Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

C0 Baseline .57 .85 .88 .87 .63 .46 .53 .65 .33 .44 .66 .67 .67
D0 Baseline .70 .89 .85 .87 .74 .38 .50 .71 .31 .43 .76 .62 .68
D4 FlatCat .73 .85 .92 .89 .75 .62 .68 .60 .38 .46 .76 .75 .76

Table 3: Boundary precision (Pre), recall (Rec), and F1-scores for different subsets of
the evaluation data.

model (D4). e performance has improved for all morph paerns. e +
paern has the largest increase, with improvements both in precision and recall. e
recall scores of compound words (+) and suffix sequences (++) are
also clearly improved.

4 Conclusions
We have applied an active learning approach to modeling morphological segmenta-
tion of North Sámi. e work was accomplished using open-source soware ¹. We
present the collected language resources for the use of the scientific community ².

e performance of the segmentation model was shown to increase rapidly as the
amount of human-annotated data was increased. One of our findings is the impor-
tance of collecting an unbiased development set for optimization of hyper-parameters,
even though this reduces the amount of human-labeled data available for training.
Cross-validating using the selected samples is not an adequate compromise.

One avenue for future work is exploring other measures for selecting the words to
annotate. ese can include applying other language models, but can also be based on
direct statistics of the language, e.g. frequencies and lengths of thewords or substrings
of the words. A thorough comparison to random selection should also be performed.
Another question is how well this approach extends to other languages and corpora.
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